ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon-assisted-tunneling in a coupled double quantum dot out of thermal equilibrium

97   0   0.0 ( 0 )
 نشر من قبل Guo-Ping Guo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform photon-assisted-tunneling (PAT) experiments on a GaAs double quantum dot device under high microwave excitation power. Photon-assisted absorption of up to 14 photons is observed, when electron temperature (>1K) are far above the lattice temperature. Signatures of Landau-Zener-Stuckelberg (LZS) interference are found even in this non-equilibrium PAT spectrum. In addition, the charge state relaxation time T_1~8ns measured in this out of thermal equilibrium double quantum dot is in agreement with other previous reports.

قيم البحث

اقرأ أيضاً

We consider a superconducting microwave cavity capacitively coupled to both a quantum conductor and its electronic reservoirs. We analyze in details how the measurements of the cavity microwave field, which are related to the electronic charge suscep tibility, can be used to extract information on the transport properties of the quantum conductor. We show that the asymmetry of the capacitive couplings between the electronic reservoirs and the cavity plays a crucial role in relating optical measurements to transport properties. For asymmetric capacitive couplings, photonic measurements can be used to probe the finite low frequency admittance of the quantum conductor, the real part of which being related to the differential conductance. In particular, when the quantum dot is far from resonance, the charge susceptibility is directly proportional to the admittance for a large range of frequencies and voltages. However, when the quantum conductor is near a resonance, such a relation generally holds only at low frequency and for equal tunnel coupling or low voltage. Beyond this low-energy near equilibrium regime, the charge susceptibility and thus the optical transmission offers new insights on the quantum conductors since the optical observables are not directly connected to transport quantities. For symmetric lead capacitive couplings, we show that the optical measurements can be used to reveal the Korringa-Shiba relation, connecting the reactive to the dissipative part of the susceptibility, at low frequency and low bias.
We investigate the non-classical states of light that emerge in a microwave resonator coupled to a periodically-driven electron in a nanowire double quantum dot (DQD). Under certain drive configurations, we find that the resonator approaches a therma l state at the temperature of the surrounding substrate with a chemical potential given by a harmonic of the drive frequency. Away from these thermal regions we find regions of gain and loss, where the system can lase, or regions where the DQD acts as a single-photon source. These effects are observable in current devices and have broad utility for quantum optics with microwave photons.
Coupling a quantum system to a bosonic environment always give rise to inelastic processes, which reduce the coherency of the system. We measure energy dependent rates for inelastic tunneling processes in a fully controllable two-level system of a do uble quantum dot. The emission and absorption rates are well repro-duced by Einsteins coefficients, which relate to the spontaneous emission rate. The inelastic tunneling rate can be comparable to the elastic tunneling rate if the boson occupation number becomes large. In the specific semiconductor double dot, the energy dependence of the inelastic rate suggests that acoustic phonons are coupled to the double dot piezoelectrically.
We propose a current correlation spectrum approach to probe the quantum behaviors of a nanome-chanical resonator (NAMR). The NAMR is coupled to a double quantum dot (DQD), which acts as a quantum transducer and is further coupled to a quantum-point c ontact (QPC). By measuring the current correlation spectrum of the QPC, shifts in the DQD energy levels, which depend on the phonon occupation in the NAMR, are determined. Quantum behaviors of the NAMR could, thus, be observed. In particular, the cooling of the NAMR into the quantum regime could be examined. In addition, the effects of the coupling strength between the DQD and the NAMR on these energy shifts are studied. We also investigate the impacts on the current correlation spectrum of the QPC due to the backaction from the charge detector on the DQD.
Quantum confinement leads to the formation of discrete electronic states in quantum dots. Here we probe electron-phonon interactions in a suspended InAs nanowire double quantum dot (DQD) that is electric-dipole coupled to a microwave cavity. We apply a finite bias across the wire to drive a steady state population in the DQD excited state, enabling a direct measurement of the electron-phonon coupling strength at the DQD transition energy. The amplitude and phase response of the cavity field exhibit features that are periodic in the DQD energy level detuning due to the phonon modes of the nanowire. The observed cavity phase shift is consistent with theory that predicts a renormalization of the cavity center frequency by coupling to phonons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا