ﻻ يوجد ملخص باللغة العربية
In this work, we demonstrate that the nonlinear response of certain soft-matter systems can be tailored at will by appropriately engineering their optical polarizability. In particular, we deliberately synthesize stable colloidal suspensions with negative polarizabilities, and observe for the first time robust propagation and enhanced transmission of self-trapped light over long distances that would have been otherwise impossible in conventional suspensions with positive polarizabilities. What greatly facilitates this behavior is an induced saturable nonlinear optical response introduced by the thermodynamic properties of these colloidal systems. This in turn leads to a substantial reduction in scattering via self-activated transparency effects. Our results may open up new opportunities in developing soft-matter systems with tunable optical nonlinearities.
A theoretical variation between the two distinct light-matter coupling regimes, namely weak and strong coupling, becomes uniquely feasible in open optical Fabry-Perot microcavities with low mode volume, as discussed here. In combination with monolaye
Pristine, undoped graphene has a constant absorption of 2.3 % across the visible to near-infrared (VIS-NIR) region of the electromagnetic spectrum. Under certain conditions, such as nanostructuring and intense gating, graphene can interact more robus
We analyze both theoretically and by means of numerical simulations the phenomena of filamentation and dynamical formation of self-guided nonlinear waves in media featuring competing cubic and quintic nonlinearities. We provide a theoretical descript
We propose a cavity QED scheme to enable cross-phase modulation between two arbitrarily weak classical fields in the optical domain, using organic molecular photoswitches as a disordered intracavity nonlinear medium. We show that a long-lived vibrati
Despite tremendous advances in the fundamentals and applications of cavity quantum electrodynamics (CQED), investigations in this field have primarily been limited to optical cavities composed of purely dielectric materials. Here, we demonstrate a hy