ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving photon detector efficiency using a high-fidelity optical CNOT gate

260   0   0.0 ( 0 )
 نشر من قبل Robinjeet Singh
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A significant problem for optical quantum computing is inefficient, or inaccurate photo-detectors. It is possible to use CNOT gates to improve a detector by making a large cat state then measuring every qubit in that state. In this paper we develop a code that compares five different schemes for making multiple measurements, some of which are capable of detecting loss and some of which are not. We explore how each of these schemes performs in the presence of different errors, and derive a formula to find at what probability of qubit loss is it worth detecting loss, and at what probability does this just lead to further errors than the loss introduces.



قيم البحث

اقرأ أيضاً

In our earlier work we posited that simple quantum gates and quantum algorithms can be designed utilizing the diffraction phenomena of a photon within a multiplexed holographic element. The quantum eigenstates we use are the photons transverse linear momentum (LM) as measured by the number of waves of tilt across the aperture. Two properties of linear optical quantum computing (LOQC) within the circuit model make this approach attractive. First, any conditional measurement can be commuted in time with any unitary quantum gate; and second, photon entanglement can be encoded as a superposition state of a single photon in a higher-dimensional state space afforded by LM. We describe here our experimental results for construction a controlled NOT (CNOT) gate logic within a holographic medium, and present the quantum state tomography for this device. Our theoretical and numerical results indicate that OptiGrates photo-thermal refractive (PTR) glass is an enabling technology. This work has been grounded on coupled-mode theory and numerical simulations, all with parameters consistent with PTR glass. We discuss the strengths (high efficiencies, robustness to environment) and limitations (scalability, crosstalk) of this technology. While not scalable, the utility and robustness of such optical elements for broader quantum information processing applications can be substantial.
We discuss a novel approach to the problem of creating a photon number resolving detector using the giant Kerr nonlinearities available in electromagnetically induced transparency. Our scheme can implement a photon number quantum non-demolition measu rement with high efficiency ($sim$99%) using less than 1600 atoms embedded in a dielectric waveguide.
We show that the use of shaped pulses improves the fidelity of a Rydberg blockade two-qubit entangling gate by several orders of magnitude compared to previous protocols based on square pulses or optimal control pulses. Using analytical Derivative Re moval by Adiabatic Gate (DRAG) pulses that reduce excitation of primary leakage states and an analytical method of finding the optimal Rydberg blockade we generate Bell states with a fidelity of $F>0.9999$ in a 300 K environment for a gate time of only $50;{rm ns}$, which is an order of magnitude faster than previous protocols. These results establish the potential of neutral atom qubits with Rydberg blockade gates for scalable quantum computation.
We implement a two-qubit logic gate between a $^{43}mathrm{Ca}^+,$ hyperfine qubit and a $^{88}mathrm{Sr}^+,$ Zeeman qubit. For this pair of ion species, the S--P optical transitions are close enough that a single laser of wavelength $402,mathrm{nm}$ can be used to drive the gate, but sufficiently well separated to give good spectral isolation and low photon scattering errors. We characterize the gate by full randomized benchmarking, gate set tomography and Bell state analysis. The latter method gives a fidelity of $99.8(1)%$, comparable to that of the best same-species gates and consistent with known sources of error.
Homodyne detection is considered as a way to improve the efficiency of communication near the single-photon level. The current lack of commercially available {it infrared} photon-number detectors significantly reduces the mutual information accessibl e in such a communication channel. We consider simulating direct detection via homodyne detection. We find that our particular simulated direct detection strategy could provide limited improvement in the classical information transfer. However, we argue that homodyne detectors (and a polynomial number of linear optical elements) cannot simulate photocounters arbitrarily well, since otherwise the exponential gap between quantum and classical computers would vanish.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا