ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral optical monitoring of a double-peaked emission line AGN Arp 102B: I. Variability of spectral lines and continuum

120   0   0.0 ( 0 )
 نشر من قبل Dragana Ili\\'c
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we present results of the long-term (1987-2010) optical spectral monitoring of the broad line radio galaxy Arp 102B, a prototype of active galactic nuclei with the double-peaked broad emission lines, usually assumed to be emitted from an accretion disk. To explore the structure of the broad line region (BLR), we analyze the light curves of the broad Halpha and Hbeta lines and the continuum flux. We aim to estimate the dimensions of the broad-line emitting regions and the mass of the central black hole. We use the CCF to find lags between the lines and continuum variations. We investigate in more details the correlation between line and continuum fluxes, moreover we explore periodical variations of the red-to-blue line flux ratio using Lomb-Scargle periodograms. The line and continuum light curves show several flare-like events. The fluxes in lines and in the continuum are not showing a big change (around 20%) during the monitoring period. We found a small correlation between the line and continuum flux variation, that may indicate that variation in lines has weak connection with the variation of the central photoionization source. In spite of a low line-continuum correlation, using several methods, we estimated a time lag for Hbeta around 20 days. The correlation between the Hbeta and Halpha flux variation is significantly higher than between lines and continuum. During the monitoring period, the Hbeta and Halpha lines show double-peaked profiles and we found an indication for a periodical oscillation in the red-to-blue flux ratio of the Halpha line. The estimated mass of the central black hole is sim 1.1 times 10^8 Modot that is in an agreement with the mass estimated from the M-sigma* relation.



قيم البحث

اقرأ أيضاً

We investigate a long-term (26 years, from 1987 to 2013) variability in the broad spectral line properties of the radio galaxy Arp 102B, an active galaxy with broad double-peaked emission lines. We use observations presented in Paper I (Shapovalova e t al. 2013) in the period from 1987 to 2011, and a new set of observations performed in 2012--2013. To explore the BLR geometry, and clarify some contradictions about the nature of the BLR in Arp 102B we explore variations in the H$alpha$ and H$beta$ line parameters during the monitored period. We fit the broad lines with three broad Gaussian functions finding the positions and intensities of the blue and red peaks in H$alpha$ and H$beta$. Additionally we fit averaged line profiles with the disc model. We find that the broad line profiles are double-peaked and have not been changed significantly in shapes, beside an additional small peak that, from time to time can be seen in the blue part of the H$alpha$ line. The positions of the blue and red peaks { have not changed significantly during the monitored period. The H$beta$ line is broader than H$alpha$ line in the monitored period. The disc model is able to reproduce the H$beta$ and H$alpha$ broad line profiles, however, observed variability in the line parameters are not in a good agreement with the emission disc hypothesis. It seems that the BLR of Arp 102B has a disc-like geometry, but the role of an outflow can also play an important role in observed variation of the broad line properties.
132 - I. Strateva 2006
We summarize the optical, UV, and X-ray properties of double-peaked emitters -- AGN with double-peaked Balmer emission lines believed to originate in the AGN accretion disk. We focus on the X-ray spectroscopic results obtained from a new sample of th e 16 broadest Balmer line AGN observed with Chandra and Swift.
AGN with double-peaked narrow lines (DPAGN) may be caused by kiloparsec scale binary AGN, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGN in which the two narrow line components have closely similar intensity as being espec ially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGN from Smith et al. (2010), the equal-peaked objects (EPAGN) have [Ne V]/[O III] ratios lower than for a control sample of non-double peaked AGN. This is unexpected for a pair of normal AGN in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H-beta ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.
182 - T. An , Z. Paragi , S. Frey 2013
The galaxy 3C,316 is the brightest in the radio band among the optically-selected candidates exhibiting double-peaked narrow optical emission lines. Observations with the Very Large Array (VLA), Multi-Element Remotely Linked Interferometer Network (e -MERLIN), and the European VLBI Network (EVN) at 5,GHz have been used to study the radio structure of the source in order to determine the nature of the nuclear components and to determine the presence of radio cores. The e-MERLIN image of 3C 316 reveals a collimated coherent east-west emission structure with a total extent of about 3 kpc. The EVN image shows seven discrete compact knots on an S-shaped line. However, none of these knots could be unambiguously identified as an AGN core. The observations suggest that the majority of the radio structure belongs to a powerful radio AGN, whose physical size and radio spectrum classify it as a compact steep-spectrum source. Given the complex radio structure with radio blobs and knots, the possibility of a kpc-separation dual AGN cannot be excluded if the secondary is either a naked core or radio quiet.
We present MERLIN observations of the continuum (both 1.6 and 5 GHz) and OH maser emission towards Arp220. the correct spatial configuration of the various componnents of the galaxy is revealed. In the eastern component the masers are shown to be gen erally coincident with the larger scale continuum emission; in the west, the masers and continuum do not generally arise from the same location. A velocity gradient (0.32+/-0.03km/s/pc) is found in the eastern nuclear region in MERLIN scales; this gradient is three times smaller than seen in OH and implies that the OH gas lies inside the HI. A re-analysis of previously presented global VLBI data (Lonsdale et al. 1998) reveals a very high velocity gradient (18.67+/-0.12km/s/pc) in one component, possibly the site of a heavily obscured AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا