ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits on Quaoars Atmosphere

47   0   0.0 ( 0 )
 نشر من قبل Wesley C. Fraser
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we present high cadence photometry taken by the Acquisition Camera on Gemini South, of a close passage by the $sim540$ km radius Kuiper Belt Object, (50000) Quaoar, of a r=20.2 background star. Observations before and after the event show that the apparent impact parameter of the event was $0.019pm0.004$, corresponding to a close approach of $580pm120$ km to the centre of Quaoar. No signatures of occultation by either Quaoars limb or its potential atmosphere are detectable in the relative photometry of Quaoar and the target star, which were unresolved during closest approach. From this photometry we are able to put constraints on any potential atmosphere Quaoar might have. Using a Markov chain Monte Carlo and likelihood approach, we place pressure upper limits on sublimation supported, isothermal atmospheres of pure N$_2$, CO, and CH$_4$. For N$_2$ and CO, the upper limit surface pressures are 1 and 0.7 $mu{bar}$ respectively. The surface temperature required for such low sublimation pressures is $sim33$ K, much lower than Quaoars mean temperature of $sim44$ K measured by others. We conclude that Quaoar cannot have an isothermal N$_2$ or CO atmosphere. We cannot eliminate the possibility of a CH$_4$ atmosphere, but place upper surface pressure and mean temperature limits of $sim138$ nbar and $sim44$ K respectively.

قيم البحث

اقرأ أيضاً

We have searched for the presence of simple P and S-bearing molecules in Titans atmosphere, by looking for the characteristic signatures of phosphine and hydrogen sulfide in infrared spectra obtained by Cassini CIRS. As a result we have placed the fi rst upper limits on the stratospheric abundances, which are 1 ppb (PH3) and 330 ppb (H2S), at the 2-sigma significance level.
We report the detection of an atmosphere on a rocky exoplanet, GJ 1132 b, which is similar to Earth in terms of size and density. The atmospheric transmission spectrum was detected using Hubble WFC3 measurements and shows spectral signatures of aeros ol scattering, HCN, and CH$_{4}$ in a low mean molecular weight atmosphere. We model the atmospheric loss process and conclude that GJ 1132 b likely lost the original H/He envelope, suggesting that the atmosphere that we detect has been reestablished. We explore the possibility of H$_{2}$ mantle degassing, previously identified as a possibility for this planet by theoretical studies, and find that outgassing from ultrareduced magma could produce the observed atmosphere. In this way we use the observed exoplanet transmission spectrum to gain insights into magma composition for a terrestrial planet. The detection of an atmosphere on this rocky planet raises the possibility that the numerous powerfully irradiated Super-Earth planets, believed to be the evaporated cores of Sub-Neptunes, may, under favorable circumstances, host detectable atmospheres.
Despite their importance for determining the evolution of the Earths atmosphere and surface conditions, the evolutionary histories of the Earths atmospheric CO$_2$ abundance during the Archean eon and the Suns activity are poorly constrained. In this study, we apply a state-of-the-art physical model for the upper atmosphere of the Archean Earth to study the effects of different atmospheric CO$_2$/N$_2$ mixing ratios and solar activity levels on the escape of the atmosphere to space. We find that unless CO$_2$ was a major constituent of the atmosphere during the Archean eon, enhanced heating of the thermosphere by the Suns strong X-ray and ultraviolet radiation would have caused rapid escape to space. We derive lower limits on the atmospheric CO$_2$ abundance of approximately 40% at 3.8~billion years ago, which is likely enough to counteract the faint young Sun and keep the Earth from being completely frozen. Furthermore, our results indicate that the Sun was most likely born as a slow to moderate {rotating young G-star} to prevent rapid escape, putting essential constraints on the Suns activity evolution throughout the solar systems history. In case that there were yet unknown cooling mechanisms present in the Archean atmosphere, this could reduce our CO$_2$ stability limits, and it would allow a more active Sun.
To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Ea rths interior and magnetic field at the present time. When applied to Venus, assuming that planet lacks plate tectonics and has a dehydrated mantle with an elevated viscosity, the model shows that the dynamo shuts down or never operated. Our model predicts that at a fixed planet mass, dynamo history is sensitive to core size, but not to the initial inventory of long-lived, heat-producing radionuclides. It predicts that rocky planets larger than 2.5 Earth masses will not develop inner cores because the temperature-pressure slope of the iron solidus becomes flatter than that of the core adiabat. Instead, iron snow will condense near or at the top of these cores, and the net transfer of latent heat upwards will suppress convection and a dynamo. More massive planets can have anemic dynamos due to core cooling, but only if they have mobile lids (plate tectonics). The lifetime of these dynamos is shorter with increasing planet mass but longer with higher surface temperature. Massive Venus-like planets with stagnant lids and more viscous mantles will lack dynamos altogether. We identify two alternative sources of magnetic fields on rocky planets: eddy currents induced in the hot or molten upper layers of planets on very short period orbits, and dynamos in the ionic conducting layers of ocean planets with ~10% mass in an upper mantle of water (ice).
The naked-eye star 55 Cancri hosts a planetary system with five known planets, including a hot super-Earth (55 Cnc e) extremely close to its star and a farther out giant planet (55 Cnc b), found in milder irradiation conditions with respect to other known hot Jupiters. This system raises important questions on the evolution of atmospheres for close-in exoplanets, and the dependence with planetary mass and irradiation. These questions can be addressed by Lyman-alpha transit observations of the extended hydrogen planetary atmospheres, complemented by contemporaneous measurements of the stellar X-ray flux. In fact, planet `e has been detected in transit, suggesting the system is seen nearly edge-on. Yet, planet `b has not been observed in transit so far. Here, we report on Hubble Space Telescope STIS Lyman-alpha and Chandra ACIS-S X-ray observations of 55 Cnc. These simultaneous observations cover two transits of 55 Cnc e and two inferior conjunctions of 55 Cnc b. They reveal the star as a bright Lyman-alpha target and a variable X-ray source. While no significant signal is detected during the transits of 55 Cnc e, we detect a surprising Lyman-alpha absorption of 7.5 +/- 1.8% (4.2 sigma) at inferior conjunctions of 55 Cnc b. The absorption is only detected over the range of Doppler velocities where the stellar radiation repels hydrogen atoms towards the observer. We calculate a false-alarm probability of 4.4%, which takes into account the a-priori unknown transit parameters. This result suggests the possibility that 55 Cnc b has an extended upper H I atmosphere, which undergoes partial transits when the planet grazes the stellar disc. If confirmed, it would show that planets cooler than hot Jupiters can also have extended atmospheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا