ترغب بنشر مسار تعليمي؟ اضغط هنا

AGN behind the SMC selected from radio and X-ray surveys

448   0   0.0 ( 0 )
 نشر من قبل Richard Sturm
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The XMM-Newton survey of the Small Magellanic Cloud (SMC) revealed 3053 X-ray sources with the majority expected to be active galactic nuclei (AGN) behind the SMC. However, the high stellar density in this field often does not allow assigning unique optical counterparts and hinders source classification. On the other hand, the association of X-ray point sources with radio emission can be used to select background AGN with high confidence, and to constrain other object classes like pulsar wind nebula. To classify X-ray and radio sources, we use clear correlations of X-ray sources found in the XMM-Newton survey with radio-continuum sources detected with ATCA and MOST. Deep radio-continuum images were searched for correlations with X-ray sources of the XMM-Newton SMC-survey point-source catalogue as well as galaxy clusters seen with extended X-ray emission. Eighty eight discrete radio sources were found in common with the X-ray point-source catalogue in addition to six correlations with extended X-ray sources. One source is identified as a Galactic star and eight as galaxies. Eight radio sources likely originate in AGN that are associated with clusters of galaxies seen in X-rays. One source is a PWN candidate. We obtain 43 new candidates for background sources located behind the SMC. A total of 24 X-ray sources show jet-like radio structures.



قيم البحث

اقرأ أيضاً

We have analyzed the NVSS and SUMSS data at 1.4 GHz and 843 MHz for a well defined complete sample of hard X-ray AGN observed by INTEGRAL. A large number (70/79) of sources are detected in the radio band, showing a wide range of radio morphologies, f rom unresolved or slightly resolved cores to extended emission over several hundreds of kpc scales. The radio fluxes have been correlated with the 2-10 keV and 20-100 keV emission, revealing significant correlations with slopes consistent with those expected for radiatively efficient accreting systems. The high energy emission coming from the inner accretion regions correlates with the radio emission averaged over hundreds of kpc scales (i.e., thousands of years).
We investigate the optical morphologies of candidate active galaxies identified at radio, X-ray, and mid-infrared wavelengths. We use the Advanced Camera for Surveys General Catalog (ACS-GC) to identify 372, 1360, and 1238 AGN host galaxies from the VLA, XMM-Newton and Spitzer Space Telescope observations of the COSMOS field, respectively. We investigate both quantitative (GALFIT) and qualitative (visual) morphologies of these AGN host galaxies, split by brightness in their selection band. We find that the radio-selected AGN are most distinct, with a very low incidence of having unresolved optical morphologies and a high incidence of being hosted by early-type galaxies. In comparison to X-ray selected AGN, mid-IR selected AGN have a slightly higher incidence of being hosted by disk galaxies. These morphological results conform with the results of Hickox et al. 2009 who studied the colors and large-scale clustering of AGN, and found a general association of radio-selected AGN with ``red sequence galaxies, mid-IR selected AGN with ``blue cloud galaxies, and X-ray selected AGN straddling these samples in the ``green valley. In the general scenario where AGN activity marks and regulates the transition from late-type disk galaxies into massive elliptical galaxies, this work suggests that the earlier stages are most evident as mid-IR selected AGNs. Mid-IR emission is less susceptible to absorption than the relatively soft X-rays probed by XMM-Newton, which are seen at later stages in the transition. Radio-selected AGN are then typically associated with minor bursts of activity in the most massive galaxies.
Context: Finding Active Galactic Nuclei (AGN) behind the Magellanic Clouds (MCs) is difficult because of the high stellar density in these fields. Although the first AGN behind the Small Magellanic Cloud (SMC) were reported in the 1980s, it is only r ecently that the number of AGN known behind the SMC has increased by several orders of magnitude. Aims: The mid-infrared colour selection technique has been proven to be an efficient means of identifying AGN, especially obscured sources. The X-ray regime is complementary in this regard and we use XMM-Newton observations to support the identification of AGN behind the SMC. Methods: We present a catalogue of AGN behind the SMC by correlating an updated X-ray point source catalogue from our XMM-Newton survey of the SMC with already known AGN from the literature as well as a list of candidates obtained from the ALLWISE mid-infrared colour selection criterion. We studied the properties of the sample with respect to their redshifts, luminosities and X-ray spectral characteristics. We also identified the near-infrared counterpart of the sources from the VISTA observations. Results: The redshift and luminosity distributions of the sample (where known) indicate that we detect sources from nearby Seyfert galaxies to distant and obscured quasars. The X-ray hardness ratios are compatible with those typically expected for AGN. The VISTA colours and variability are also consistent in this regard. A positive correlation was observed between the integrated X-ray flux (0.2--12 keV) and the ALLWISE and VISTA magnitudes. We further present a sample of new candidate AGN and candidates for obscured AGN. All of these make an interesting subset for further follow-up studies. An initial spectroscopic follow-up of 6 out of the 81 new candidates showed all six sources are active galaxies, albeit two with narrow emission lines.
Using the latest 70 month Swift-BAT catalog we examined hard X-ray selected Seyfert I galaxies which are relatively little known and little studied, and yet potentially promising to test the ionized relativistic reflection model. From this list we ch ose 13 sources which have been observed by XMM-Newton for less than 20 ks, in order to explore the broad band soft to hard X-ray properties with the analysis of combined XMM-Newton and Swift data. Out of these we found seven sources which exhibit potentially promising features of the relativistic disc reflection, such as a strong soft excess, a large Compton hump and/or a broadened Fe line. Longer observations of four of these sources with the currently operating satellite missions, such as Suzaku, XMM-Newton and NuStar and two others by such future missions as ASTRO-H, will be invaluable, in order to better understand the relativistic disc reflection closest to the central black hole and constrain such important effects of strong gravity as the black hole spin.
Giant radio galaxies (GRGs), with extended structures reaching hundreds of kpc, are among the most spectacular examples of ejection of relativistic plasma from super-massive black holes. In this work, third of a series, we present LOw Frequency ARray (LOFAR) images at 144 MHz, collected in the framework of the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS DR2), for nine sources extracted from our sample of hard X-ray selected GRGs (HXGRG, i.e. from INTEGRAL/IBIS and Swift/BAT catalogues at >20 keV). Thanks to the resolution and sensitivity of LoTSS, we could probe the complex morphology of these GRGs, unveiling cases with diffuse (Mpc-scale) remnant emission, presence of faint off-axis wings, or a misaligned inner jet. In particular, for one source (B21144+35B), we could clearly detect a $sim$300 kpc wide off-axis emission, in addition to an inner jet which orientation is not aligned with the lobes axis. For another source (J1153.9+5848) a structure consistent with jet precession was revealed, appearing as an X-shaped morphology with relic lobes having an extension larger than the present ones, and with a different axis orientation. From an environment analysis, we found 2 sources showing an overdensity of cosmological neighbours, and a correspondent association with a galaxy cluster from catalogues. Finally, a comparison with radio-selected GRGs from LoTSS DR1 suggested that, on average, HXGRG can grow to larger extents. These results highlight the importance of deep low-frequency observations to probe the evolution of radio galaxies, and ultimately estimate the duty cycle of their jets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا