ترغب بنشر مسار تعليمي؟ اضغط هنا

Asteroseismic analysis of the CoRoT target HD 169392

133   0   0.0 ( 0 )
 نشر من قبل Savita Mathur
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The satellite CoRoT (Convection, Rotation, and planetary Transits) has provided high-quality data for almost six years. We show here the asteroseismic analysis and modeling of HD169392A, which belongs to a binary system weakly gravitationally bound as the distance between the two components is of 4250 AU. The main component, HD169392A, is a G0IV star with a magnitude of 7.50 while the second component is a G0V-G2IV star with a magnitude of 8.98. This analysis focuses on the main component, as the secondary one is too faint to measure any seismic parameters. A complete modeling has been possible thanks to the complementary spectroscopic observations from HARPS, providing Teff=5985+/-60K, log g=3.96+/-0.07, and [Fe/H]=- 0.04+/-0.10.


قيم البحث

اقرأ أيضاً

The frequency ratios and of HD 49933 exhibit an increase at high frequencies. This behavior also exists in the ratios of other stars, which is considered to result from the low signal-to-noise ratio and the larger line width at the high-frequency end and could not be predicted by stellar models in previous work. Our calculations show that the behavior not only can be reproduced by stellar models, but can be predicted by asymptotic formulas of the ratios. The frequency ratios of the Sun, too, can be reproduced well by the asymptotic formulas. The increased behavior derives from the fact that the gradient of mean molecular weight at the bottom of the radiative region hinders the propagation of p-modes, while the hindrance does not exist in the convective core. This behavior should exist in the ratios of stars with a large convective core. The characteristic of the ratios at high frequencies provides a strict constraint on stellar models and aids in determining the size of the convective core and the extent of overshooting. Observational constraints point to a star with $M=1.28pm0.01 M_{odot}$, $R=1.458pm0.005 R_{odot}$, $t=1.83pm0.1$ Gyr, $r_{cc}=0.16pm0.02 R_{odot}$, $alpha=1.85pm0.05$, and $delta_{ov}=0.6pm0.2$ for HD 49933.
Solar-like oscillations are stochastically excited by turbulent convection at the surface layers of the stars. We study the role of the surface metal abundance on the efficiency of the stochastic driving in the case of the CoRoT target HD 49933. We c ompute two 3D hydrodynamical simulations representative -- in effective temperature and gravity -- of the surface layers of the CoRoT target HD 49933, a star that is rather metal poor and significantly hotter compared to the Sun. One 3D simulation has a solar metal abundance and the other has a surface iron-to-hydrogen, [Fe/H], abundance ten times smaller. For each 3D simulation we match an associated global 1D model and we compute the associated acoustic modes using a theoretical model of stochastic excitation validated in the case of the Sun and Alpha Cen A. The rate at which energy is supplied per unit time into the acoustic modes associated with the 3D simulation with [Fe/H]=-1 are found about three times smaller than those associated with the 3D simulation with [Fe/H]=0. As shown here, these differences are related to the fact that low metallicity implies surface layers with a higher mean density. In turn, a higher mean density favors smaller convective velocities and hence less efficient driving of the acoustic modes. Our result shows the importance of taking the surface metal abundance into account in the modeling of the mode driving by turbulent convection. A comparison with observational data is presented in a companion paper using seismic data obtained for the CoRoT target HD 49933.
The ratios $r_{01}$ and $r_{10}$ of small to large separations of KIC 2837475 primarily exhibit an increase behavior in the observed frequency range. The calculations indicate that only the models with overshooting parameter $delta_{rm ov}$ between a pproximately 1.2 and 1.6 can reproduce the observed ratios $r_{01}$ and $r_{10}$ of KIC 2837475. The ratios $r_{01}$ and $r_{10}$ of the frequency separations of p-modes with inner turning points that are located in the overshooting region of convective core can exhibit an increase behavior. The frequencies of the modes that can reach the overshooting region decrease with the increase in $delta_{rm ov}$. Thus the ratio distributions are more sensitive to $delta_{rm ov}$ than to other parameters. The increase behavior of the KIC 2837475 ratios results from a direct effect of the overshooting of convective core. The characteristic of the ratios provides a strict constraint on stellar models. Observational constraints point to a star with $M=1.490pm0.018$ $M_{odot}$, $R=1.67pm0.01$ $R_{odot}$, age $=2.8pm0.4$ Gyr, and $1.2lesssim$ $delta_{rm ov}$ $lesssim1.6$ for KIC 2837475.
247 - N. Ozel , B. Mosser , M.A. Dupret 2013
The CoRoT short asteroseismic runs give us the opportunity to observe a large variety of late-type stars through their solar-like oscillations. We report the observation and modeling of the F5V star HD 175272. Our aim is to define a method for extrac ting as much information as possible from a noisy oscillation spectrum. We followed a differential approach that consists of using a well-known star as a reference to characterize another star. We used classical tools such as the envelope autocorrelation function to derive the global seismic parameters of the star. We compared HD 175272 with HD 181420 through a linear approach, because they appear to be asteroseismic twins. The comparison with the reference star enables us to substantially enhance the scientific output for HD 175272. First, we determined its global characteristics through a detailed seismic analysis of HD 181420. Second, with our differential approach, we measured the difference of mass, radius and age between HD 175272 and HD 181420. We have developed a general method able to derive asteroseismic constraints on a star even in case of low-quality data. %This method is based on the comparison to a star with common seismic and classical properties. Seismic data allow accurate measurements of radii and masses differences between the two stars. This method can be applied to stars with interesting properties but low signal-to-noise ratio oscillation spectrum, such as stars hosting an exoplanet or members of a binary system.
The known beta Cephei star HD 180642 was observed by the CoRoT satellite in 2007. From the very high-precision light curve, its pulsation frequency spectrum could be derived for the first time (Degroote and collaborators). In this paper, we obtain ad ditional constraints for forthcoming asteroseismic modeling of the target. Our results are based on both extensive ground-based multicolour photometry and high-resolution spectroscopy. We determine T_eff = 24 500+-1000 K and log g = 3.45+-0.15 dex from spectroscopy. The derived chemical abundances are consistent with those for B stars in the solar neighbourhood, except for a mild nitrogen excess. A metallicity Z = 0.0099+-0.0016 is obtained. Three modes are detected in photometry. The degree l is unambiguously identified for two of them: l = 0 and l = 3 for the frequencies 5.48694 1/d and 0.30818 1/d, respectively. The radial mode is non-linear and highly dominant with an amplitude in the U-filter about 15 times larger than the strongest of the other modes. For the third frequency of 7.36673 1/d found in photometry, two possibilities remain: l = 0 or 3. In the radial velocities, the dominant radial mode presents a so-called stillstand but no clear evidence of the existence of shocks is observed. Four low-amplitude modes are found in spectroscopy and one of them, with frequency 8.4079 1/d, is identified as (l,m)=(3,2). Based on this mode identification, we finally deduce an equatorial rotational velocity of 38+-15 km/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا