ﻻ يوجد ملخص باللغة العربية
We argue against the rapidly spreading idea of gauge-invariant-extension (GIE) approach in the nucleon spin decomposition problem, which implies the existence of infinitely many gauge-invariant decomposition of the nucleon spin.
We discuss the uniqueness or non-uniqueness problem of the decomposition of the gluon field into the physical and pure-gauge components, which is the basis of the recently proposed two physically inequivalent gauge-invariant decompositions of the nuc
A homogeneous set of a graph $G$ is a set $X$ of vertices such that $2le lvert Xrvert <lvert V(G)rvert$ and no vertex in $V(G)-X$ has both a neighbor and a non-neighbor in $X$. A graph is prime if it has no homogeneous set. We present an algorithm
Dirichlets proof of infinitely many primes in arithmetic progressions was published in 1837, introduced L-series for the first time, and it is said to have started rigorous analytic number theory. Dirichlet uses Eulers earlier work on the zeta functi
We give upper and lower bounds on the number of delta-matroids, and on the number of even delta-matroids.
The recent controversy on the nucleon spin decomposition problem is critically overviewed. We argue that there exist two and only two physically inequivalent gauge-invariant decompositions of the longitudinal nucleon spin, contrary to the rapidly spr