ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase space hybrid theory of quantum measurement with nonlinear and stochastic dynamics

134   0   0.0 ( 0 )
 نشر من قبل Buric Nikola
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel theory of hybrid quantum-classical systems is developed, utilizing the mathematical framework of constrained dynamical systems on the quantum-classical phase space. Both, the quantum and the classical descriptions of the respective parts of the hybrid system are treated as fundamental. Therefore, the description of the quantum-classical interaction has to be postulated, and includes the effects of neglected degrees of freedom. Dynamical law of the theory is given in terms of nonlinear stochastic differential equations with Hamiltonian and gradient terms. The theory provides a successful dynamical description of the collapse during quantum measurement.



قيم البحث

اقرأ أيضاً

We develop a theory to describe dynamics of a non-stationary open quantum system interacting with a hybrid environment, which includes high-frequency and low-frequency noise components. One part of the system-bath interaction is treated in a perturba tive manner, whereas the other part is considered exactly. This approach allows us to derive a set of master equations where the relaxation rates are expressed as convolutions of the Bloch-Redfield and Marcus formulas. Our theory enables analysis of systems that have extremely small energy gaps in the presence of a realistic environment. As an illustration, we apply the theory to the 16-qubit quantum annealing problem with dangling qubits and show good agreement with experimental results.
We analyze the quantum evolution of a weakly nonlinear resonator due to a classical near-resonant drive and damping. The resonator nonlinearity leads to squeezing and heating of the resonator state. Using a hybrid phase-space--Fock-space representati on for the resonator state within the Gaussian approximation, we derive evolution equations for the four parameters characterizing the Gaussian state. Numerical solution of these four ordinary differential equations is much simpler and faster than simulation of the full density matrix evolution, while providing good accuracy for the system analysis during transients and in the steady state. We show that steady-state squeezing of the resonator state is limited by 3 dB; however, this limit can be exceeded during transients.
In this paper we derive the quantum statistical and dynamical properties of nonlinear optical couplers composed of two nonlinear waveguides operating by the second subharmonic generation, which are coupled linearly through evanescent waves and nonlin early through nondegenerate optical parametric interaction. Main attention is paid to generation and transmission of nonclassical light, based on a discussion of squeezing phenomenon, normalized second-order correlation function, and quasiprobability distribution functions. Initially coherent, number and thermal states of optical beams are considered. In particular, results are discussed in dependence on the strength of the nonlinear coupling relatively to the linear coupling. We show that if the Fock state $|1>$ enters the first waveguide and the vacuum state $|0>$ enters the second waveguide, the coupler can serve as a generator of squeezed vacuum state governed by the coupler parameters. Further, if thermal fields enter initially the waveguides the coupler plays similar role as a microwave Josephson-junction parametric amplifier to generate squeezed thermal light.
We study a method to simulate quantum many-body dynamics of spin ensembles using measurement-based feedback. By performing a weak collective measurement on a large ensemble of two-level quantum systems and applying global rotations conditioned on the measurement outcome, one can simulate the dynamics of a mean-field quantum kicked top, a standard paradigm of quantum chaos. We analytically show that there exists a regime in which individual quantum trajectories adequately recover the classical limit, and show the transition between noisy quantum dynamics to full deterministic chaos described by classical Lyapunov exponents. We also analyze the effects of decoherence, and show that the proposed scheme represents a robust method to explore the emergence of chaos from complex quantum dynamics in a realistic experimental platform based on an atom-light interface.
It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasi-probability distribution (Wigner function) [Phys Rev Lett 117, 180401]. Such functions take the form of expectation values of an observable that has a direct analogy to displaced parity operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable to any quantum system. We have applied our procedure to IBMs Quantum Experience five-qubit quantum processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as well as the five-qubit Greenberger-Horne-Zeilinger (GHZ) state. As Wigner functions for spin systems are not unique, we define, compare, and contrast two distinct examples. We show how using these Wigner functions leads to an optimal method for quantum state analysis especially in the situation where specific characteristic features are of particular interest (such as for spin Schrodinger cat states). Furthermore we show that this analysis leads to straightforward, and potentially very efficient, entanglement test and state characterisation methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا