ترغب بنشر مسار تعليمي؟ اضغط هنا

A view from inside iron-based superconductors

87   0   0.0 ( 0 )
 نشر من قبل Samuele Sanna Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Muon spin spectroscopy is one of the most powerful tools to investigate the microscopic properties of superconductors. In this manuscript, an overview on some of the main achievements obtained by this technique in the iron-based superconductors (IBS) are presented. It is shown how the muons allow to probe the whole phase diagram of IBS, from the magnetic to the superconducting phase, and their sensitivity to unravel the modifications of the magnetic and the superconducting order parameters, as the phase diagram is spanned either by charge doping, by an external pressure or by introducing magnetic and non-magnetic impurities. Moreover, it is highlighted that the muons are unique probes for the study of the nanoscopic coexistence between magnetism and superconductivity taking place at the crossover between the two ground-states.

قيم البحث

اقرأ أيضاً

153 - A. M. Zhang , Q. M. Zhang 2012
Iron-based superconducting layered compounds have the second highest transition temperature after cuprate superconductors. Their discovery is a milestone in the history of high-temperature superconductivity and will have profound implications for hig h-temperature superconducting mechanism as well as industrial applications. Raman scattering has been extensively applied to correlated electron systems including the new superconductors due to its unique ability to probe multiple primary excitations and their coupling. In this review, we will give a brief summary of the existing Raman experiments in the iron-based materials and their implication for pairing mechanism in particular. And we will also address some open issues from the experiments.
137 - Wei-Guo Yin , Chi-Cheng Lee , 2012
We examine the relevance of several major material-dependent parameters to the magnetic softness in iron-base superconductors by first-principles electronic structure analysis of their parent compounds. The results are explained in the spin-fermion m odel where localized spins and orbitally degenerate itinerant electrons coexist and are coupled by Hunds rule coupling. We found that the difference in the strength of the Hunds rule coupling term is the major material-dependent microscopic parameter for determining the ground-state spin pattern. The magnetic softness in iron-based superconductors is essentially driven by the competition between the double-exchange ferromagnetism and the superexchange antiferromagnetism.
Motivated by recent experiments on FeTe$_{1-x}$Se$_{x}$, we construct an explicit minimal model of an iron-based superconductor with band inversion at the $Z$ point and non-topological bulk $s_{pm}$ pairing. While there has been considerable interest in Majorana zero modes localized at vortices in such systems, we find that our model - without any vortices - intrinsically supports 1D helical Majorana modes localized at the hinges between (001) and (100) or (010) surfaces, suggesting that this is a viable platform for observing higher-order topological superconductivity. We provide a general theory for these hinge modes and discuss their stability and experimental manifestation. Our work indicates the possible experimental observability of hinge Majoranas in iron-based topological superconductors.
The possibility of p-wave pairing in superconductors has been proposed more than five decades ago, but has not yet been convincingly demonstrated. One difficulty is that some p-wave states are thermodynamically indistinguishable from s-wave, while ot hers are very similar to d-wave states. Here we studied the self-field critical current of NdFeAs(O,F) thin films in order to extract absolute values of the London penetration depth, the superconducting energy gap, and the relative jump in specific heat at the superconducting transition temperature, and find that all the deduced physical parameters strongly indicate that NdFeAs(O,F) is a bulk p-wave superconductor. Further investigation revealed that single atomic layer FeSe also shows p-wave pairing. In an attempt to generalize these findings, we re-examined the whole inventory of superfluid density measurements in iron-based superconductors show quite generally that most of the iron-based superconductors are p-wave superconductors.
We report the first-principles study of superconducting critical temperature and superconducting properties of Fe-based superconductors taking into account on the same footing phonon, charge and spin-fluctuation mediated Cooper pairing. We show that in FeSe this leads to a modulated s$pm$ gap symmetry, and that the antiferromagnetic paramagnons are the leading mechanism for superconductivity in FeSe, overcoming the strong repulsive effect of both phonons and charge pairing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا