ﻻ يوجد ملخص باللغة العربية
Description Logics (DLs) are a family of languages used for the representation and reasoning on the knowledge of an application domain, in a structured and formal manner. In order to achieve this objective, several provers, such as RACER and FaCT++, have been implemented, but these provers themselves have not been yet certified. In order to ensure the soundness of derivations in these DLs, it is necessary to formally verify the deductions applied by these reasoners. Formal methods offer powerful tools for the specification and verification of proof procedures, among them there are methods for proving properties such as soundness, completeness and termination of a proof procedure. In this paper, we present the definition of a proof procedure for the Description Logic ALC, based on a semantic tableau method. We ensure validity of our prover by proving its soundness, completeness and termination properties using Isabelle proof assistant. The proof proceeds in two phases, first by establishing these properties on an abstract level, and then by instantiating them for an implementation based on lists.
It is well-known that the size of propositional classical proofs can be huge. Proof theoretical studies discovered exponential gaps between normal or cut free proofs and their respective non-normal proofs. The aim of this work is to study how to redu
The heterogeneous nature of the logical foundations used in different interactive proof assistant libraries has rendered discovery of similar mathematical concepts among them difficult. In this paper, we compare a previously proposed algorithm for ma
The verification of many algorithms for calculating transcendental functions is based on polynomial approximations to these functions, often Taylor series approximations. However, computing and verifying approximations to the arctangent function are
We present a ke-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic $dlssx$ ($shdlssx$, for short). Our application solves the main TBox and ABox reasoning problems for $shdlssx$. In
Description logics (DLs) are well-known knowledge representation formalisms focused on the representation of terminological knowledge. Due to their first-order semantics, these languages (in their classical form) are not suitable for representing and