ترغب بنشر مسار تعليمي؟ اضغط هنا

Formal verification of a proof procedure for the description logic ALC

120   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Description Logics (DLs) are a family of languages used for the representation and reasoning on the knowledge of an application domain, in a structured and formal manner. In order to achieve this objective, several provers, such as RACER and FaCT++, have been implemented, but these provers themselves have not been yet certified. In order to ensure the soundness of derivations in these DLs, it is necessary to formally verify the deductions applied by these reasoners. Formal methods offer powerful tools for the specification and verification of proof procedures, among them there are methods for proving properties such as soundness, completeness and termination of a proof procedure. In this paper, we present the definition of a proof procedure for the Description Logic ALC, based on a semantic tableau method. We ensure validity of our prover by proving its soundness, completeness and termination properties using Isabelle proof assistant. The proof proceeds in two phases, first by establishing these properties on an abstract level, and then by instantiating them for an implementation based on lists.



قيم البحث

اقرأ أيضاً

It is well-known that the size of propositional classical proofs can be huge. Proof theoretical studies discovered exponential gaps between normal or cut free proofs and their respective non-normal proofs. The aim of this work is to study how to redu ce the weight of propositional deductions. We present the formalism of proof-graphs for purely implicational logic, which are graphs of a specific shape that are intended to capture the logical structure of a deduction. The advantage of this formalism is that formulas can be shared in the reduced proof. In the present paper we give a precise definition of proof-graphs for the minimal implicational logic, together with a normalization procedure for these proof-graphs. In contrast to standard tree-like formalisms, our normalization does not increase the number of nodes, when applied to the corresponding minimal proof-graph representations.
The heterogeneous nature of the logical foundations used in different interactive proof assistant libraries has rendered discovery of similar mathematical concepts among them difficult. In this paper, we compare a previously proposed algorithm for ma tching concepts across libraries with our unsupervised embedding approach that can help us retrieve similar concepts. Our approach is based on the fasttext implementation of Word2Vec, on top of which a tree traversal module is added to adapt its algorithm to the representation format of our data export pipeline. We compare the explainability, customizability, and online-servability of the approaches and argue that the neural embedding approach has more potential to be integrated into an interactive proof assistant.
180 - Ruben Gamboa 2014
The verification of many algorithms for calculating transcendental functions is based on polynomial approximations to these functions, often Taylor series approximations. However, computing and verifying approximations to the arctangent function are very challenging problems, in large part because the Taylor series converges very slowly to arctangent-a 57th-degree polynomial is needed to get three decimal places for arctan(0.95). Medina proposed a series of polynomials that approximate arctangent with far faster convergence-a 7th-degree polynomial is all that is needed to get three decimal places for arctan(0.95). We present in this paper a proof in ACL2(r) of the correctness and convergence rate of this sequence of polynomials. The proof is particularly beautiful, in that it uses many results from real analysis. Some of these necessary results were proven in prior work, but some were proven as part of this effort.
We present a ke-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic $dlssx$ ($shdlssx$, for short). Our application solves the main TBox and ABox reasoning problems for $shdlssx$. In particular, it solves the consistency problem for $shdlssx$-knowledge bases represented in set-theoretic terms, and a generalization of the emph{Conjunctive Query Answering} problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and optimizes a previous prototype for the consistency checking of $shdlssx$-knowledge bases (see cite{cilc17}), is implemented in textsf{C++}. It supports $shdlssx$-knowledge bases serialized in the OWL/XML format, and it admits also rules expressed in SWRL (Semantic Web Rule Language).
Description logics (DLs) are well-known knowledge representation formalisms focused on the representation of terminological knowledge. Due to their first-order semantics, these languages (in their classical form) are not suitable for representing and handling uncertainty. A probabilistic extension of a light-weight DL was recently proposed for dealing with certain knowledge occurring in uncertain contexts. In this paper, we continue that line of research by introducing the Bayesian extension BALC of the propositionally closed DL ALC. We present a tableau-based procedure for deciding consistency, and adapt it to solve other probabilistic, contextual, and general inferences in this logic. We also show that all these problems remain ExpTime-complete, the same as reasoning in the underlying classical ALC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا