ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-cluster dynamics within an ab initio framework

176   0   0.0 ( 0 )
 نشر من قبل Sofia Quaglioni
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف S. Quaglioni LLNL




اسأل ChatGPT حول البحث

We introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method (NCSM/RGM). Energy-independent non-local interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrodinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to an $^4$He+$n+n$ description of $^6$He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the NCSM. Differences between the two calculations provide a measure of core ($^4$He) polarization effects.



قيم البحث

اقرأ أيضاً

Background: Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exo tic nuclei using radioactive beam facilities and inverse kinematics. Ab initio approaches have been successfully applied to describe the $^3$H$(d,n)^4$He and $^3$He$(d,p)^4$He fusion processes. Purpose: An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of $(d,p)$ reactions to processes with light $p$-shell nuclei. As a first application, we study the elastic scattering of deuterium on $^7$Li and the ${}^{7}$Li($d$,$p$)${}^{8}$Li transfer reaction based on a two-body Hamiltonian. Methods: We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. Results: The shape of the excitation functions for deuteron impinging on ${}^{7}$Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between $d$-$^7$Li and $p$-$^8$Li particle-decay channels determines some features of the ${}^{9}$Be spectrum above the $d$+${}^{7}$Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment Conclusions: Deuteron stripping reactions with $p$-shell targets can now be computed ab initio, but calculations are very demanding. A quantitative description of the ${}^{7}$Li($d$,$p$)${}^{8}$Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels, and improve the convergence rate of our calculations.
457 - Sofia Quaglioni 2017
We realize the treatment of bound and continuum nuclear systems in the proximity of a three-body breakup threshold within the ab initio framework of the no-core shell model with continuum. Many-body eigenstates obtained from the diagonalization of th e Hamiltonian within the harmonic-oscillator expansion of the no-core shell model are coupled with continuous microscopic three-cluster states to correctly describe the nuclear wave function both in the interior and asymptotic regions. We discuss the formalism in detail and give algebraic expressions for the case of core+$n$+$n$ systems. Using similarity-renormalization-group evolved nucleon-nucleon interactions, we analyze the role of $^4$He+$n$+$n$ clustering and many-body correlations in the ground and low-lying continuum states of the Borromean $^6$He nucleus, and study the dependence of the energy spectrum on the resolution scale of the interaction. We show that $^6$He small binding energy and extended radii compatible with experiment can be obtained simultaneously, without recurring to extrapolations. We also find that a significant portion of the ground-state energy and the narrow width of the first $2^+$ resonance stem from many-body correlations that can be interpreted as core-excitation effects.
185 - M. Wloch 2005
We report converged results for the ground and excited states and matter density of 16-O using realistic two-body nucleon-nucleon interactions and coupled-cluster methods and formalism developed in quantum chemistry. Most of the binding is obtained w ith the coupled-cluster singles and doubles approach. Additional binding due to three-body clusters (triples) is minimal. The coupled-cluster method with singles and doubles provides a good description of the matter density, charge radius, charge form factor, and excited states of a 1-particle-1-hole nature, but it cannot describe the first excited 0+ state. Incorporation of triples has no effect on the latter finding.
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio app roaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO$_{rm sat}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to $^{56}$Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the $J^pi = {1/2}^-,{3/2}^-,{7/2}^-,{3/2}^+$ states in $^{17,23,25}$O, and - contrary to naive shell-model expectations - the level ordering of the $J^pi = {3/2}^+,{5/2}^+,{9/2}^+$ states in $^{53,55,61}$Ca.
A quantitative and predictive microscopic theoretical framework that can describe reactions induced by $alpha$ particles ($^4$He nuclei) and heavier projectiles is currently lacking. Such a framework would contribute to reducing uncertainty in the mo deling of stellar evolution and nucleosynthesis and provide the basis for achieving a comprehensive understanding of the phenomenon of nuclear clustering (the organization of protons and neutrons into distinct substructures within a nucleus). We have developed an efficient and general configuration-interaction framework for the description of low-energy reactions and clustering in light nuclei. The new formalism takes full advantage of powerful second-quantization techniques, enabling the description of $alpha$-$alpha$ scattering and an exploration of clustering in the exotic $^{12}$Be nucleus. We find that the $^4$He($alpha$, $alpha$)$^4$He differential cross section computed with non-locally regulated chiral interactions is in good agreement with experimental data. Our results for $^{12}$Be indicate the presence of strongly mixed helium-cluster states consistent with a molecular-like picture surviving far above the $^6$He+$^6$He threshold, and reveal the strong influence of neutron decay in both the $^{12}$Be spectrum and in the $^6$He($^6$He,$alpha$)$^8$He cross section. We expect that this approach will enable the description of helium burning cross sections and provide insight on how three-nucleon forces influence the emergence of clustering in nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا