ﻻ يوجد ملخص باللغة العربية
We show that the dynamics of a laser driven Rydberg gas in the limit of strong dephasing is described by a master equation with manifest kinetic constraints. The equilibrium state of the system is uncorrelated but the constraints in the dynamics lead to spatially correlated collective relaxation reminiscent of glasses. We study and quantify the evolution towards equilibrium in one and two dimensions, and analyze how the degree of glassiness and the relaxation time are controlled by the interaction strength between Rydberg atoms. We also find that spontaneous decay of Rydberg excitations leads to an interruption of glassy relaxation that takes the system to a highly correlated non-equilibrium stationary state. The results presented here, which are in principle also applicable other systems such as polar molecules and atoms with large magnetic dipole moments, show that the collective behavior of cold atomic and molecular ensembles can be similar to that found in soft condensed-matter systems.
We present experimental results on the controlled de-excitation of Rydberg states in a cold gas of Rb atoms. The effect of the van der Waals interactions between the Rydberg atoms is clearly seen in the de-excitation spectrum and dynamics. Our observ
How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. B
The observation of strongly interacting many-body phenomena in atomic gases typically requires ultracold samples. Here we show that the strong interaction potentials between Rydberg atoms enable the observation of many-body effects in an atomic vapor
We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating frame, where a paraxial approximation allows us to c
We observe the shift of Rydberg levels of rubidium close to a copper surface when atomic clouds are repeatedly deposited on it. We measure transition frequencies of rubidium to S and D Rydberg states with principal quantum numbers n between 31 and 48