ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic constraints, hierarchical relaxation and onset of glassiness in strongly interacting and dissipative Rydberg gases

259   0   0.0 ( 0 )
 نشر من قبل Igor Lesanovsky
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the dynamics of a laser driven Rydberg gas in the limit of strong dephasing is described by a master equation with manifest kinetic constraints. The equilibrium state of the system is uncorrelated but the constraints in the dynamics lead to spatially correlated collective relaxation reminiscent of glasses. We study and quantify the evolution towards equilibrium in one and two dimensions, and analyze how the degree of glassiness and the relaxation time are controlled by the interaction strength between Rydberg atoms. We also find that spontaneous decay of Rydberg excitations leads to an interruption of glassy relaxation that takes the system to a highly correlated non-equilibrium stationary state. The results presented here, which are in principle also applicable other systems such as polar molecules and atoms with large magnetic dipole moments, show that the collective behavior of cold atomic and molecular ensembles can be similar to that found in soft condensed-matter systems.



قيم البحث

اقرأ أيضاً

We present experimental results on the controlled de-excitation of Rydberg states in a cold gas of Rb atoms. The effect of the van der Waals interactions between the Rydberg atoms is clearly seen in the de-excitation spectrum and dynamics. Our observ ations are confirmed by numerical simulations. In particular, for off-resonant (facilitated) excitation we find that the de-excitation spectrum reflects the spatial arrangement of the atoms in the quasi one-dimensional geometry of our experiment. We discuss future applications of this technique and implications for detection and controlled dissipation schemes.
How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. B y coupling these states with a resonant microwave driving we realize a dipolar XY spin-1/2 model in an external field. Starting from a spin-polarized state we suddenly switch on the external field and monitor the subsequent many-body dynamics. Our key observation is density dependent relaxation of the total magnetization much faster than typical decoherence rates. To determine the processes governing this relaxation we employ different theoretical approaches which treat quantum effects on initial conditions and dynamical laws separately. This allows us to identify an intrinsically quantum component to the relaxation attributed to primordial quantum fluctuations.
The observation of strongly interacting many-body phenomena in atomic gases typically requires ultracold samples. Here we show that the strong interaction potentials between Rydberg atoms enable the observation of many-body effects in an atomic vapor , even at room temperature. We excite Rydberg atoms in cesium vapor and observe in real-time an out-of-equilibrium excitation dynamics that is consistent with an aggregation mechanism. The experimental observations show qualitative and quantitative agreement with a microscopic theoretical model. Numerical simulations reveal that the strongly correlated growth of the emerging aggregates is reminiscent of soft-matter type systems.
We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating frame, where a paraxial approximation allows us to c onsider them as massive particles. In contrast to atoms and nuclei, the photons have a large anisotropy between their longitudinal mass, arising from dispersion, and their transverse mass, arising from diffraction. Nevertheless, we show that in suitably rescaled coordinates the effective interactions become dominated by s-wave scattering near threshold and, as a result, give rise to an Efimov effect near unitarity. We show that the three-body loss of these Efimov trimers can be strongly suppressed and determine conditions under which these states are observable in current experiments. These effects can be naturally extended to probe few-body universality beyond three bodies, as well as the role of Efimov physics in the non-equilbrium, many-body regime.
We observe the shift of Rydberg levels of rubidium close to a copper surface when atomic clouds are repeatedly deposited on it. We measure transition frequencies of rubidium to S and D Rydberg states with principal quantum numbers n between 31 and 48 using the technique of electromagnetically induced transparency. The spectroscopic measurement shows a strong increase of electric fields towards the surface that evolves with the deposition of atoms. Starting with a clean surface, we measure the evolution of electrostatic fields in the range between 30 and 300 mum from the surface. We find that after the deposition of a few hundred atomic clouds, each containing ~10^6 atoms, the field of adsorbates reaches 1 V/cm for a distance of 30 mum from the surface. This evolution of the electrostatic field sets serious limitations on cavity QED experiments proposed for Rydberg atoms on atom chips.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا