ترغب بنشر مسار تعليمي؟ اضغط هنا

Micron-Scale Mapping of Megagauss Magnetic Fields in Petawatt Laser-Solid Interactions

74   0   0.0 ( 0 )
 نشر من قبل Gourab Chatterjee
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report spatially and temporally resolved measurements of magnetic fields generated by petawatt laser-solid interactions with high spatial resolution, using optical polarimetry. The polarimetric measurements map the megagauss magnetic field profiles generated by the fast electron currents at the target rear. The magnetic fields at the rear of a 50 $mu$m thick aluminum target exhibit distinct and unambiguous signatures of electron beam filamentation. These results are corroborated by hybrid simulations.

قيم البحث

اقرأ أيضاً

A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially-resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally-incident time-delayed pr obe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is of the order of the pulsewidth, whereas a spatial resolution of a few microns is achieved by this optical technique. In addition, this technique does not suffer from refraction effects due to the steep plasma density gradients owing to the near-normal incidence of the probe pulse and consequently, higher harmonics of the probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The micron-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.
We present picosecond-resolution streaked K-shell spectra from 400 nm-diameter nickel nanowire arrays, demonstrating the ability to generate large volumes of high energy density plasma when combined with the longer pulses typical of the largest short pulse lasers. After irradiating the wire array with 100 J, 600 fs ultra-high-contrast laser pulses focussed to $>10^{20}$ W/cm$^{2}$ at the Orion laser facility, we combine atomic kinetics modeling of the streaked spectra with 2D collisional particle-in-cell simulations to describe the evolution of material conditions within these samples for the first time. We observe a three-fold enhancement of helium-like emission compared to a flat foil in a near-solid-density plasma sustaining keV temperatures for tens of picoseconds, the result of strong electric return currents heating the wires and causing them to explode and collide.
308 - K. D. Xiao , C. T. Zhou , H. Zhang 2018
Production of the huge longitudinal magnetic fields by using an ultraintense laser pulse irradiating a solenoid target is considered. Through three-dimensional particle-in-cell simulations, it is shown that the longitudinal magnetic field up to ten k ilotesla can be observed in the ultraintense laser-solenoid target interactions. The finding is associated with both fast and return electron currents in the solenoid target. The huge longitudinal magnetic field is of interest for a number of important applications, which include controlling the divergence of laser-driven energetic particles for medical treatment, fast-ignition in inertial fusion, etc., as an example, the well focused and confined directional electron beams are realized by using the solenoid target.
When a finite contrast petawatt laser pulse irradiates a micron-thick foil, a prepulse (including amplified spontaneous emission) creates a preplasma, where an ultrashort relativistically strong portion of the laser pulse (the main pulse) acquires hi gher intensity due to relativistic self-focusing and undergoes fast depletion transferring energy to fast electrons. If the preplasma thickness is optimal, the main pulse can reach the target generating fast ions more efficiently than an ideal, infinite contrast, laser pulse. A simple analytical model of a target with preplasma formation is developed and the radiation pressure dominant acceleration of ions in this target is predicted. The preplasma formation by a nanosecond prepulse is analyzed with dissipative hydrodynamic simulations. The main pulse interaction with the preplasma is studied with multi-parametric particle-in-cell simulations. The optimal conditions for hundreds of MeV ion acceleration are found with accompanying effects important for diagnostics, including high-order harmonics generation.
Producing inward orientated streams of energetic electrons by intense laser pulses acting on solid targets is the most robust and accessible way of transferring the laser energy to particles, which underlies numerous applications, ranging from TNSA t o laboratory astrophysics. Structures with the scale of the laser wavelength can significantly enhance energy absorption, which has been in the center of attention in recent studies. In this article, we demonstrate and assess the effect of the structures for widening the angular distribution of generated energetic electrons. We analyse the results of PIC simulations and reveal several aspects that can be important for the related applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا