ترغب بنشر مسار تعليمي؟ اضغط هنا

Inference on differences between classes using cluster-specific contrasts of mixed effects

203   0   0.0 ( 0 )
 نشر من قبل Shu-Kay (Angus) Ng
 تاريخ النشر 2013
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of differentially expressed (DE) genes is one of the most commonly studied problems in bioinformatics. For example, the identification of DE genes between distinct disease phenotypes is an important first step in understanding and developing treatment drugs for the disease. It can also contribute significantly to the construction of a discriminant rule for predicting the class of origin of an unclassified tissue sample from a patient. We present a novel approach to the problem of detecting DE genes that is based on a test statistic formed as a weighted (normalized) cluster-specific contrast in the mixed effects of the mixture model used in the first instance to cluster the gene profiles into a manageable number of clusters. The key factor in the formation of our test statistic is the use of gene-specific mixed effects in the cluster-specific contrast. It thus means that the (soft) assignment of a given gene to a cluster is not crucial. This is because in addition to class differences between the (estimated) fixed effects terms for a cluster, gene-specific class differences also contribute to the cluster-specific contributions to the final form of the test statistic. The proposed test statistic can be used where the primary aim is to rank the genes in order of evidence against the null hypothesis of no DE. We also show how a P-value can be calculated for each gene for use in multiple hypothesis testing where the intent is to control the false discovery rate (FDR) at some desired level. With the use of real and simulated data sets, we show that the proposed contrast-based approach outperforms other methods commonly used for the detection of DE genes both in a ranking context with lower proportion of false discoveries and in a multiple hypothesis testing context with higher power for a specified level of the FDR.



قيم البحث

اقرأ أيضاً

108 - Mark Tygert 2021
Comparing the differences in outcomes (that is, in dependent variables) between two subpopulations is often most informative when comparing outcomes only for individuals from the subpopulations who are similar according to independent variables. The independent variables are generally known as scores, as in propensity scores for matching or as in the probabilities predicted by statistical or machine-learned models, for example. If the outcomes are discrete, then some averaging is necessary to reduce the noise arising from the outcomes varying randomly over those discrete values in the observed data. The traditional method of averaging is to bin the data according to the scores and plot the average outcome in each bin against the average score in the bin. However, such binning can be rather arbitrary and yet greatly impacts the interpretation of displayed deviation between the subpopulations and assessment of its statistical significance. Fortunately, such binning is entirely unnecessary in plots of cumulative differences and in the associated scalar summary metrics that are analogous to the workhorse statistics of comparing probability distributions -- those due to Kolmogorov and Smirnov and their refinements due to Kuiper. The present paper develops such cumulative methods for the common case in which no score of any member of the subpopulations being compared is exactly equal to the score of any other member of either subpopulation.
131 - Peng Wu , Zhiqiang Tan , Wenjie Hu 2021
Covariate-specific treatment effects (CSTEs) represent heterogeneous treatment effects across subpopulations defined by certain selected covariates. In this article, we consider marginal structural models where CSTEs are linearly represented using a set of basis functions of the selected covariates. We develop a new approach in high-dimensional settings to obtain not only doubly robust point estimators of CSTEs, but also model-assisted confidence intervals, which are valid when a propensity score model is correctly specified but an outcome regression model may be misspecified. With a linear outcome model and subpopulations defined by discrete covariates, both point estimators and confidence intervals are doubly robust for CSTEs. In contrast, confidence intervals from existing high-dimensional methods are valid only when both the propensity score and outcome models are correctly specified. We establish asymptotic properties of the proposed point estimators and the associated confidence intervals. We present simulation studies and empirical applications which demonstrate the advantages of the proposed method compared with competing ones.
204 - Sai Li , Tony T. Cai , Hongzhe Li 2019
Linear mixed-effects models are widely used in analyzing clustered or repeated measures data. We propose a quasi-likelihood approach for estimation and inference of the unknown parameters in linear mixed-effects models with high-dimensional fixed eff ects. The proposed method is applicable to general settings where the dimension of the random effects and the cluster sizes are possibly large. Regarding the fixed effects, we provide rate optimal estimators and valid inference procedures that do not rely on the structural information of the variance components. We also study the estimation of variance components with high-dimensional fixed effects in general settings. The algorithms are easy to implement and computationally fast. The proposed methods are assessed in various simulation settings and are applied to a real study regarding the associations between body mass index and genetic polymorphic markers in a heterogeneous stock mice population.
There is growing evidence that the prevalence of disagreement in the raw annotations used to construct natural language inference datasets makes the common practice of aggregating those annotations to a single label problematic. We propose a generic method that allows one to skip the aggregation step and train on the raw annotations directly without subjecting the model to unwanted noise that can arise from annotator response biases. We demonstrate that this method, which generalizes the notion of a textit{mixed effects model} by incorporating textit{annotator random effects} into any existing neural model, improves performance over models that do not incorporate such effects.
Understanding treatment effect heterogeneity in observational studies is of great practical importance to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modeling such heterogeneity. In this paper, we propose a new method for inference on heterogeneous quantile treatment effects that incorporates high-dimensional covariates. Our estimator combines a debiased $ell_1$-penalized regression adjustment with a quantile-specific covariate balancing scheme. We present a comprehensive study of the theoretical properties of this estimator, including weak convergence of the heterogeneous quantile treatment effect process to the sum of two independent, centered Gaussian processes. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and an empirical example, dealing with the differential effect of mothers education on infant birth weights.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا