ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Polarization Properties of InAs Quantum Dots by Atomistic Modeling of Growth Dynamics

236   0   0.0 ( 0 )
 نشر من قبل Muhammad Usman
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A model for realistic InAs quantum dot composition profile is proposed and analyzed, consisting of a double region scheme with an In-rich internal core and an In-poor external shell, in order to mimic the atomic scale phenomena such as In-Ga intermixing and In segregation during the growth and overgrowth with GaAs. The parameters of the proposed model are derived by reproducing the experimentally measured polarization data. Further understanding is developed by analyzing the strain fields which suggests that the two-composition model indeed results in lower strain energies than the commonly applied uniform composition model.



قيم البحث

اقرأ أيضاً

We calculate quantum transport for metal-graphene nanoribbon heterojunctions within the atomistic self-consistent Schrodinger/Poisson scheme. Attention is paid on both the chemical aspects of the interface bonding as well the one-dimensional electros tatics along the ribbon length. Band-bending and doping effects strongly influence the transport properties, giving rise to conductance asymmetries and a selective suppression of the subband formation. Junction electrostatics and p-type characteristics drive the conduction mechanism in the case of high work function Au, Pd and Pt electrodes, while contact resistance becomes dominant in the case of Al.
Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using three gates, we can form either single quantum dots, or two quantum dots in series along the nanowire. Measurements of the stability diagrams for both cases show that this method is suitable for producing high quality quantum dots in InAs.
We report electrical characterization of quantum dots formed by introducing pairs of thin wurtzite (WZ) segments in zinc blende (ZB) InAs nanowires. Regular Coulomb oscillations are observed over a wide gate voltage span, indicating that WZ segments create significant barriers for electron transport. We find a direct correlation of transport properties with quantum dot length and corresponding growth time of the enclosed ZB segment. The correlation is made possible by using a method to extract lengths of nanowire crystal phase segments directly from scanning electron microscopy images, and with support from transmission electron microscope images of typical nanowires. From experiments on controlled filling of nearly empty dots with electrons, up to the point where Coulomb oscillations can no longer be resolved, we estimate a lower bound for the ZB-WZ conduction-band offset of 95 meV.
299 - I. Hapke-Wurst 2002
We investigated the size dependence of the ground state energy in self-assembled InAs quantum dots embedded in resonant tunneling diodes. Individual current steps observed in the current-voltage characteristics are attributed to resonant single-elect ron tunneling via the ground state of individual InAs quantum dots. The onset voltage of the first step observed is shown to decrease systematically from 200 mV to 0 with increasing InAs coverage. We relate this to a coverage-dependent size of InAs dots grown on AlAs. The results are confirmed by atomic force micrographs and photoluminescence experiments on reference samples.
133 - D. Kim , W. Sheng , P.J. Poole 2008
Photoluminescence data from single, self-assembled InAs/InP quantum dots in magnetic fields up to 7 T are presented. Exciton g-factors are obtained for dots of varying height, corresponding to ground state emission energies ranging from 780 meV to 11 00 meV. A monotonic increase of the g-factor from -2 to +1.2 is observed as the dot height decreases. The trend is well reproduced by sp3 tight binding calculations, which show that the hole g-factor is sensitive to confinement effects through orbital angular momentum mixing between the light-hole and heavy-hole valence bands. We demonstrate tunability of the exciton g-factor by manipulating the quantum dot dimensions using pyramidal InP nanotemplates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا