ﻻ يوجد ملخص باللغة العربية
We present an alternative scheme to the widely used method of representing the basis of one-band Hubbard model through the relation $I=I_{uparrow}+2^{M}I_{downarrow}$ given by H. Q. Lin and J. E. Gubernatis [Comput. Phys. 7, 400 (1993)], where $I_{uparrow}$, $I_{downarrow}$ and $I$ are the integer equivalents of binary representations of occupation patterns of spin up, spin down and both spin up and spin down electrons respectively, with $M$ being the number of sites. We compute and store only $I_{uparrow}$ or $I_{downarrow}$ at a time to generate the full Hamiltonian matrix. The non-diagonal part of the Hamiltonian matrix given as ${cal{I}}_{downarrow}otimes{bf{H}_{uparrow}} oplus {bf{H}_{downarrow}}otimes{cal{I}}_{uparrow}$ is generated using a bottom-up approach by computing the small matrices ${bf{H}_{uparrow}}$(spin up hopping Hamiltonian) and ${bf{H}_{downarrow}}$(spin down hopping Hamiltonian) and then forming the tensor product with respective identity matrices ${cal{I}}_{downarrow}$ and ${cal{I}}_{uparrow}$, thereby saving significant computation time and memory. We find that the total CPU time to generate the non-diagonal part of the Hamiltonian matrix using the new one spin configuration basis scheme is reduced by about an order of magnitude as compared to the two spin configuration basis scheme. The present scheme is shown to be inherently parallelizable. Its application to translationally invariant systems, computation of Greens functions and in impurity solver part of DMFT procedure is discussed and its extention to other models is also pointed out.
We have obtained the exact ground state wave functions of the Anderson-Hubbard model for different electron fillings on a 4x4 lattice with periodic boundary conditions - for 1/2 filling such ground states have roughly 166 million states. When compare
We have used exact numerical diagonalization to study the excitation spectrum and the dynamic spin correlations in the $s=1/2$ next-next-nearest neighbor Heisenberg antiferromagnet on the square lattice, with additional 4-spin ring exchange from high
We propose a distinct numerical approach to effectively solve the problem of partial diagonalization of the super-large-scale quantum electronic Hamiltonian matrices. The key ingredients of our scheme are the new method for arranging the basis vector
We present an efficient exact diagonalization scheme for the extended dynamical mean-field theory and apply it to the extended Hubbard model on the square lattice with nonlocal charge-charge interactions. Our solver reproduces the phase diagram of th
The tunable magnetism at graphene edges with lengths of up to 48 unit cells is analyzed by an exact diagonalization technique. For this we use a generalized interacting one-dimensional model which can be tuned continuously from a limit describing gra