ﻻ يوجد ملخص باللغة العربية
We present and analyze an a posteriori error estimator based on mesh refinement for the solution of the hypersingular boundary integral equation governing the Laplacian in three dimensions. The discretization under consideration is a non-conforming domain decomposition method based on the Nitsche technique. Assuming a saturation property, we establish quasi-reliability and efficiency of the error estimator in comparison with the error in a natural (non-conforming) norm. Numerical experiments with uniform and adaptively refined meshes confirm our theoretical results.
This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold fo
In this work we study a residual based a posteriori error estimation for the CutFEM method applied to an elliptic model problem. We consider the problem with non-polygonal boundary and the analysis takes into account the geometry and data approximati
The analysis of the double-diffusion model and $mathbf{H}(mathrm{div})$-conforming method introduced in [Burger, Mendez, Ruiz-Baier, SINUM (2019), 57:1318--1343] is extended to the time-dependent case. In addition, the efficiency and reliability anal
Many practical problems occur due to the boundary value problem. This paper evaluates the finite element solution of the boundary value problem of Poissons equation and proposes a novel a posteriori local error estimation based on the Hypercircle met
We present and analyze a non-conforming domain decomposition approximation for a hypersingular operator governed by the Helmholtz equation in three dimensions. This operator appears when considering the corresponding Neumann problem in unbounded doma