ترغب بنشر مسار تعليمي؟ اضغط هنا

Decay properties for functions of matrices over $C^*$-algebras

61   0   0.0 ( 0 )
 نشر من قبل Paola Boito
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend previous results on the exponential off-diagonal decay of the entries of analytic functions of banded and sparse matrices to the case where the matrix entries are elements of a $C^*$-algebra.

قيم البحث

اقرأ أيضاً

124 - Sean Hon 2018
Circulant preconditioners for functions of matrices have been recently of interest. In particular, several authors proposed the use of the optimal circulant preconditioners as well as the superoptimal circulant preconditioners in this context and num erically illustrated that such preconditioners are effective for certain functions of Toeplitz matrices. Motivated by their results, we propose in this work the absolute value superoptimal circulant preconditioners and provide several theorems that analytically show the effectiveness of such circulant preconditioners for systems defined by functions of Toeplitz matrices. Namely, we show that the eigenvalues of the preconditioned matrices are clustered around $pm 1$ and rapid convergence of Krylov subspace methods can therefore be expected. Moreover, we show that our results can be extended to functions of block Toeplitz matrices with Toeplitz blocks provided that the optimal block circulant matrices with circulant blocks are used as preconditioners. Numerical examples are given to support our theoretical results.
We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interp olation error $1-r/f$ on the spectral interval of $A$. By minimizing this upper bound over all interpolation points, we obtain a new, simple and sharp a priori bound for the relative interpolation error. We then consider three different approaches of representing and computing the rational interpolant $r$. Theoretical and numerical evidence is given that any of these methods for a scalar argument allows to achieve high precision, even in the presence of finite precision arithmetic. We finally investigate the problem of efficiently evaluating $r(A)$, where it turns out that the relative error for a matrix argument is only small if we use a partial fraction decomposition for $r$ following Antoulas and Mayo. An important role is played by a new stopping criterion which ensures to automatically find the degree of $r$ leading to a small error, even in presence of finite precision arithmetic.
54 - Huaxin Lin 2009
Let $X$ be a compact metric space which is locally absolutely retract and let $phi: C(X)to C(Y, M_n)$ be a unital homomorphism, where $Y$ is a compact metric space with ${rm dim}Yle 2.$ It is proved that there exists a sequence of $n$ continuous maps $alfa_{i,m}: Yto X$ ($i=1,2,...,n$) and a sequence of sets of mutually orthogonal rank one projections ${p_{1, m}, p_{2,m},...,p_{n,m}}subset C(Y, M_n)$ such that $$ lim_{mtoinfty} sum_{i=1}^n f(alfa_{i,m})p_{i,m}=phi(f) for all fin C(X). $$ This is closely related to the Kadison diagonal matrix question. It is also shown that this approximate diagonalization could not hold in general when ${rm dim}Yge 3.$
143 - Sean Hon 2018
We propose several circulant preconditioners for systems defined by some functions $g$ of Toeplitz matrices $A_n$. In this paper we are interested in solving $g(A_n)mathbf{x}=mathbf{b}$ by the preconditioned conjugate method or the preconditioned min imal residual method, namely in the cases when $g(z)$ are the functions $e^{z}$, $sin{z}$ and $cos{z}$. Numerical results are given to show the effectiveness of the proposed preconditioners.
In this paper we study the C*-envelope of the (non-self-adjoint) tensor algebra associated via subproduct systems to a finite irreducible stochastic matrix $P$. Firstly, we identify the boundary representations of the tensor algebra inside the Toepli tz algebra, also known as its non-commutative Choquet boundary. As an application, we provide examples of C*-envelopes that are not *-isomorphic to either the Toeplitz algebra or the Cuntz-Pimsner algebra. This characterization required a new proof for the fact that the Cuntz-Pimsner algebra associated to $P$ is isomorphic to $C(mathbb{T}, M_d(mathbb{C}))$, filling a gap in a previous paper. We then proceed to classify the C*-envelopes of tensor algebras of stochastic matrices up to *-isomorphism and stable isomorphism, in terms of the underlying matrices. This is accomplished by determining the K-theory of these C*-algebras and by combining this information with results due to Paschke and Salinas in extension theory. This classification is applied to provide a clearer picture of the various C*-envelopes that can land between the Toeplitz and the Cuntz-Pimsner algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا