ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupling of the A_{1g} As-phonon to magnetism in iron pnictides

181   0   0.0 ( 0 )
 نشر من قبل Maria Jose Calderon
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge, spin and lattice degrees of freedom are strongly entangled in iron superconductors. A neat consequence of this entanglement is the behavior of the A_{1g} As-phonon resonance in the different polarization symmetries of Raman spectroscopy when undergoing the magneto-structural transition. In this work we show that the observed behavior could be a direct consequence of the coupling of the phonons with the electronic excitations in the anisotropic magnetic state. We discuss this scenario within a five orbital tight-binding model coupled to phonons via the dependence of the Slater-Koster parameters on the As position. We identify two qualitatively different channels of the electron-phonon interaction: a geometrical one related to the Fe-As-Fe angle and another one associated with the modification upon As displacement of the Fe-As energy integrals pdsigma and pdpi. While both mechanisms result in a finite B_{1g} response, the behavior of the phonon intensity in the A_{1g} and B_{1g} Raman polarization geometries is qualitatively different when the coupling is driven by the angle or by the energy integral dependence. We discuss our results in view of the experimental reports.



قيم البحث

اقرأ أيضاً

255 - C. Liu , D.-X. Yao , 2011
We study a two-orbital spin model to describe (pi,0) stripe antiferromagnetism in the iron pnictides. The double-spin model has an on-site Hundss coupling and inter-site interactions extending to second neighbors (inter- and intra-orbital) on the squ are lattice. Using a variational method based on a cluster decomposition, we optimize wave functions with up to 8 cluster sites (up to 2^16 variational parameters). We focus on the anomalously small ordered moments in the stripe state of the pnictides. To account for it, and large variations among different compounds, we show that the second-neighbor cross-orbital exchange constant should be ferromagnetic, which leads to partially hidden stripe order, with a moment that can be varied over a large range by small changes in the coupling constants. In a different parameter region, we confirm the existence of a canted state previously found in spin-wave theory. We also identify several other phases of the model.
We investigate the quasiparticle relaxation and low-energy electronic structure in undoped SrFe_2As_2 exhibiting spin-density wave (SDW) ordering using optical pump-probe femtosecond spectroscopy. A remarkable critical slowing down of the quasipartic le relaxation dynamics at the SDW transition temperature T_SDW = 200K is observed. From temperature dependence of the transient reflectivity amplitude we determine the SDW-state charge gap magnitude, 2Delta_SDW/k_BT_SDW=7.2+-1. The second moment of the Eliashberg function, lambda<(hbar omega)^2>=110+-10meV^2, determined from the relaxation time above T_SDW, is similar to SmFeAsO and BaFe_2As_2 indicating a rather small electron phonon coupling constant unless the electron-phonon spectral function (alpha^2F(omega) is strongly enhanced in the low-energy phonon region.
304 - Dheeraj Kumar Singh 2015
Orbital-ordering instability arising due to the intrapocket nesting is investigated for the tight-binding models of pnictides in the presence of orbital-lattice coupling. The incommensurate instabilities with small momentum, which may play an importa nt role in the nematic-ordering transition, vary from model to model besides being more favorable in comparison to the spin-density wave instability in the absence of good interpocket nesting. We also examine the doping dependence of such instabilities. The electron-phonon coupling parameter required to induce them are compared with the first-principle calculations.
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental man ifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.
We calculate the expected finite frequency neutron scattering intensity based on the two-sublattice collinear antiferromagnet found by recent neutron scattering experiments as well as by theoretical analysis on the iron oxypnictide LaOFeAs. We consid er two types of superexchange couplings between Fe atoms: nearest-neighbor coupling J1 and next-nearest-neighbor coupling J2. We show how to distinguish experimentally between ferromagnetic and antiferromagnetic J1. Whereas magnetic excitations in the cuprates display a so-called resonance peak at (pi,pi) (corresponding to a saddlepoint in the magnetic spectrum) which is at a wavevector that is at least close to nesting Fermi-surface-like structures, no such corresponding excitations exist in the iron pnictides. Rather, we find saddlepoints near (pi,pi/2) and (0,pi/2)(and symmetry related points). Unlike in the cuprates, none of these vectors are close to nesting the Fermi surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا