ترغب بنشر مسار تعليمي؟ اضغط هنا

Zitterbewegung in Bogoliubovs System

136   0   0.0 ( 0 )
 نشر من قبل Fulin Zhang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that Bogoliubovs quasiparticle in superfluid $^3He-B$ undergoes the Zitterbewegung, as a free relativistic Diracs electron does. The expectation value of position, as well as spin, of the quasiparticle is obtained and compared with that of the Diracs electron. In particular, the Zitterbewegung of Bogoliubovs quasiparticle has a frequency approximately $10^5$ lower than that of an electron, rendering a more promising experimental observation.



قيم البحث

اقرأ أيضاً

Ultra-cold atoms which are subject to ultra-relativistic dynamics are investigated. By using optically induced gauge potentials we show that the dynamics of the atoms is governed by a Dirac type equation. To illustrate this we study the trembling mot ion of the centre of mass for an effective two level system, historically called Zitterbewegung. Its origin is described in detail, where in particular the role of the finite width of the atomic wave packets is seen to induce a damping of both the centre of mass dynamics and the dynamics of the populations of the two levels.
In terms of a photon wave function corresponding to the (1, 0)+(0, 1) representation of the Lorentz group, the radiation and Coulomb fields within a source-free region can be described unitedly by a Lorentz-covariant Dirac-like equation. In our forma lism, the relation between the positive- and negative-energy solutions of the Dirac-like equation corresponds to the duality between the electric and magnetic fields, rather than to the usual particle-antiparticle symmetry. The zitterbewegung (ZB) of photons is studied via the momentum vector of the electromagnetic field, which shows that only in the presence of virtual longitudinal and scalar photons, the ZB motion of photons can occur, and its vector property is described by the polarization vectors of the electromagnetic field.
In term of the volume-integrated Poynting vector, we present a quantum field-theory investigation on the zitterbewegung (ZB) of photons, and show that this ZB occurs only in the presence of virtual longitudinal and scalar photons. To present a heuris tic explanation for such ZB, by assuming that the space time is sufficiently close to the flat Minkowski space, we show that the gravitational interaction can result in the ZB of photons.
The validity of the work by Lamata et al [Phys. Rev. Lett. 98, 253005 (2007)] can be further shown by quantum field theory considerations.
123 - Sven Ahrens , Jun Jiang , Yong Sun 2015
We develop a dynamic description of an effective Dirac theory in metamaterials, in which the wavefunction is modeled by the corresponding electric and magnetic field in the metamaterial. This electro-magnetic field can be probed in the experimental s etup, which means that the wavefunction of the effective theory is directly accessible by measurement. Our model is based on a plane wave expansion, which ravels the identification of Dirac spinors with single-frequency excitations of the electro-magnetic field in the metamaterial. The characteristic Zitterbewegung is shown to emerge in simulations of the effective theory and we verify this signature with an analytic solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا