ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for time-independent neutrino emission from astrophysical sources with 3 years of IceCube data

112   0   0.0 ( 0 )
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a search for neutrino point sources using the IceCube data collected between April 2008 and May 2011 with three partially completed configurations of the detector: the 40-, 59- and 79-string configurations. The live-time of this data set are 1,040 days. An unbinned maximum likelihood ratio test was used to search for an excess of neutrinos above the atmospheric background at any given direction in the sky. By adding two more years of data with improved event selection and reconstruction techniques, the sensitivity was improved by a factor 3.5 or more with respect to the previously published results obtained with the 40-string configuration of IceCube. We performed an all-sky survey and a dedicated search using a catalog of textit{a priori} selected objects observed by other telescopes. In both searches, the data are compatible with the background-only hypothesis. In the absence of evidence for a signal, we set upper limits on the flux of muon neutrinos. For an E$^{-2}$ neutrino spectrum, the observed limits are between 0.9 and $23.2times 10^{-12}$ TeV$^{-1}$ cm$^{-2}$s$^{-1}$. We also report upper limits for neutrino emission from groups of sources which were selected according to theoretical models or observational parameters and analysed with a stacking approach.


قيم البحث

اقرأ أيضاً

Since the recent detection of an astrophysical flux of high energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resol ution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over seven years from 2008--2015. The discovery potential of the analysis in the northern sky is now significantly below $E_ u^2dphi/dE_ u=10^{-12}:mathrm{TeV,cm^{-2},s^{-1}}$, on average $38%$ lower than the sensitivity of the previously published analysis of four years exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.
Since the discovery of a flux of high-energy astrophysical neutrinos, searches for their origins have focused primarily at TeV-PeV energies. Compared to sub-TeV searches, high-energy searches benefit from an increase in the neutrino cross section, im proved angular resolution on the neutrino direction, and a reduced background from atmospheric neutrinos and muons. However, the focus on high energy does not preclude the existence of sub-TeV neutrino emission where IceCube retains sensitivity. Here we present the first all-flavor search from IceCube for transient emission of low-energy neutrinos, between 1-100 GeV using three years of data obtained with the IceCube-DeepCore detector. We find no evidence of transient neutrino emission in the data, thus leading to a constraint on the volumetric rate of astrophysical transient sources in the range of $sim 705-2301, text{Gpc}^{-3}, text{yr}^{-1}$ for sources following a subphotospheric energy spectrum with a mean energy of 100 GeV and a bolometric energy of $10^{52}$ erg.
High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic-ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prio r assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period since all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong variability, inducing a very prominent gamma-ray flare observed in 2015 June. This event motivated a dedicated study of the blazar, which consists of searching for a time-dependent neutrino signal correlated with the gamma-ray emission. No evidence for a time-dependent signal is found. Hence, an upper limit on the neutrino fluence is derived, allowing us to constrain a hadronic emission model.
We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned max imum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an $E^{-2}$ energy spectrum assumed, which is 0.0021 GeV cm$^{-2}$ per burst for emission timescales up to textasciitilde10$^2$ seconds from the northern hemisphere stacking search.
We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between May 15th 2012 and April 30th 2013. While the search methods employed in this analysis are similar to th ose used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon neu- trinos from the Northern Sky (-5$^{circ}$ < {delta} < 90$^{circ}$ ) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events is used to search for any significant self-correlation in the dataset. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1$,$s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا