ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deep Chandra X-ray Limit on the Putative IMBH in Omega Centauri

98   0   0.0 ( 0 )
 نشر من قبل Daryl Haggard
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a sensitive X-ray search for the proposed intermediate mass black hole (IMBH) in the massive Galactic cluster, Omega Centauri (NGC 5139). Combining Chandra X-ray Observatory data from Cycles 1 and 13, we obtain a deep (~291 ks) exposure of the central regions of the cluster. We find no evidence for an X-ray point source near any of the clusters proposed dynamical centers, and place an upper limit on the X-ray flux from a central source of f_X(0.5-7.0 keV) <= 5.0x10^-16 erg cm^-2 s^-1, after correcting for absorption. This corresponds to an unabsorbed X-ray luminosity of L_X(0.5-7.0 keV) <= 1.6x10^30 erg s^-1, for a cluster distance of 5.2 kpc, Galactic column density N_H = 1.2x10^21 cm^-2, and powerlaw spectrum with Gamma = 2.3. If a ~10^4 M_sun IMBH resides in the clusters core, as suggested by some stellar dynamical studies, its Eddington luminosity would be L_Edd ~10^42 erg s^-1. The new X-ray limit would then establish an Eddington ratio of L_X/L_Edd <~ 10^-12, a factor of ~10 lower than even the quiescent state of our Galaxys notoriously inefficient supermassive black hole Sgr A*, and imply accretion efficiencies as low as eta <~ 10^-6 - 10^-8. This study leaves open three possibilities: either Omega Cen does not harbor an IMBH or, if an IMBH does exist, it must experience very little or very inefficient accretion.

قيم البحث

اقرأ أيضاً

We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel (WFC) images obtained using F625W, F435W, and F658N filters; with 9 pointings we cover the central ~10x10 of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ~40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M_625 = 10.4 - 12.6, making them comparable in brightness to field CVs near the period minimum discovered in the SDSS (Gansicke et al. 2009). Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously-reported quiescent low-mass X-ray binary (Haggard et al. 2004). We also identify three foreground stars and 11 probable active galactic nuclei. Finally, we report the discovery of a group of seven stars whose X-ray properties are suggestive of magnetically active binaries, and whose optical counterparts lie on or very near the metal-rich anomalous giant and subgiant branches in {omega} Cen. If the apparent association between these seven stars and the RGB/SGB-a stars is real, then the frequency of X-ray sources in this metal-rich population is enhanced by a factor of at least five relative to the other giant and subgiant populations in the cluster. If these stars are not members of the metal-rich population, then they bring to 20 the total number of red stragglers (also known as sub-subgiants) that have been identified in {omega} Cen, the largest number yet known in any globular cluster.
Using X-ray sources as sensitive probes of stellar dynamical interactions in globular clusters (GCs), we study the mass segregation and binary burning processes in $omega$ Cen. We show that the mass segregation of X-ray sources is quenched in $omega$ Cen, while the X-ray source abundance of $omega$ Cen is much smaller than other GCs, and the binary hardness ratio (defined as $L_{rm X}/(L_{rm K}f_{b})$, with $f_{b}$ the binary fraction, $L_{rm X}$ and $L_{rm K}$ the cumulative X-ray and K band luminosity of GCs, respectively) of $omega$ Cen is located far below the $L_{rm X}/(L_{rm K}f_{b})-sigma_{c}$ correlation line of the dynamically normal GCs. These evidences suggest that the binary burning processes are highly suppressed in $omega$ Cen, and other heating mechanisms, very likely a black hole subsystem (BHS), are essential in the dynamical evolution of $omega$ Cen. Through the black hole burning processes (i.e., dynamical hardening of the BH binaries), the BHS is dominating the energy production of $omega$ Cen, which also makes $omega$ Cen a promising factory of gravitational-wave sources in the Galaxy.
208 - Yael Naze , You-Hua Chu 2014
A very sensitive X-ray investigation of the giant HII region N11 in the LMC was performed using the Chandra X-ray Observatory. The 300ks observation reveals X-ray sources with luminosities down to 10^32 erg/s, increasing by more than a factor of 5 th e number of known point sources in the field. Amongst these detections are 13 massive stars (3 compact groups of massive stars, 9 O-stars and one early B-star) with log(Lx/Lbol)~-6.5 to -7, which may suggest that they are highly magnetic or colliding wind systems. On the other hand, the stacked signal for regions corresponding to undetected O-stars yields log(Lx/Lbol)~-7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population.
Ultra-deep observations of ECDF-S with Chandra and XMM-Newton enable a search for extended X-ray emission down to an unprecedented flux of $2times10^{-16}$ ergs s$^{-1}$ cm$^{-2}$. We present the search for the extended emission on spatial scales of 32$^{primeprime}$ in both Chandra and XMM data, covering 0.3 square degrees and model the extended emission on scales of arcminutes. We present a catalog of 46 spectroscopically identified groups, reaching a redshift of 1.6. We show that the statistical properties of ECDF-S, such as logN-logS and X-ray luminosity function are broadly consistent with LCDM, with the exception that dn/dz/d$Omega$ test reveals that a redshift range of $0.2<z<0.5$ in ECDF-S is sparsely populated. The lack of nearby structure, however, makes studies of high-redshift groups particularly easier both in X-rays and lensing, due to a lower level of clustered foreground. We present one and two point statistics of the galaxy groups as well as weak-lensing analysis to show that the detected low-luminosity systems are indeed low-mass systems. We verify the applicability of the scaling relations between the X-ray luminosity and the total mass of the group, derived for the COSMOS survey to lower masses and higher redshifts probed by ECDF-S by means of stacked weak lensing and clustering analysis, constraining any possible departures to be within 30% in mass. Abridged.
We present the X-ray point source population of NGC 7457 based on 124 ks of Chandra observations. Previous deep Chandra observations of low mass X-ray binaries (LMXBs) in early-type galaxies have typically targeted the large populations of massive ga laxies. NGC 7457 is a nearby, early-type galaxy with a stellar luminosity of $1.7times10^{10} L_{Kodot}$, allowing us to investigate the populations in a relatively low mass galaxy. We classify the detected X-ray sources into field LMXBs, globular cluster LMXBs, and background AGN based on identifying optical counterparts in new HST/ACS images. We detect 10 field LMXBs within the $r_{ext}$ ellipse of NGC 7457 (with semi-major axis $sim$ 9.1 kpc, ellipticity = 0.55). The corresponding number of LMXBs with $L_{x}>2times10^{37}erg/s$ per stellar luminosity is consistent with that observed in more massive galaxies, $sim 7$ per $10^{10} L_{Kodot}$. We detect a small globular cluster population in these HST data and show that its colour distribution is likely bimodal and that its specific frequency is similar to that of other early type galaxies. However, no X-ray emission is detected from any of these clusters. Using published data for other galaxies, we show that this non-detection is consistent with the small stellar mass of these clusters. We estimate that 0.11 (and 0.03) LMXBs are expected per $10^{6}M_{odot}$ in metal-rich (and metal-poor) globular clusters. This corresponds to 1100 (and 330) LMXBs per $10^{10} L_{Kodot}$, highlighting the enhanced formation efficiency of LMXBs in globular clusters. A nuclear X-ray source is detected with $L_{x}$ varying from $2.8-6.8times10^{38}erg/s$. Combining this $L_{x}$ with a published dynamical mass estimate for the central SMBH in NGC 7457, we find that $L_{x}/L_{Edd}$ varies from $0.5-1.3times10^{-6}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا