ﻻ يوجد ملخص باللغة العربية
In this brief report we pointed at mistake in paper A. Zholents, Damping Force in the Transit-Time Method of Optical Stochastic Cooling, PRLST. Mar 1, 2012. 2 pp. Published in Phys.Rev.ST Accel. Beams 15 (2012) 032801.
Ultra-fast stochastic cooling would be desirable in certain applications, for example, in order to boost final luminosity in a muon collider or neutrino factory, where short particle lifetimes severely limit the total time available to reduce beam ph
In preparation for a demonstration of optical stochastic cooling in the Cornell Electron Storage Ring (CESR) we have developed a particle tracking simulation to study the relevant beam dynamics. Optical radiation emitted in the pickup undulator gives
We compare the method of Coherent Electron Cooling with Enhanced Optical Cooling. According to our estimations the Enhanced Optical Cooling method demonstrates some advantage for parameters of LHC.
The paper presents a journal version of the Design Report on the Optical Stochastic Cooling experiment to be carried out at IOTA ring in Fermilab later this year. It discusses the theory which experiment is based on, beam parameters, major requiremen
Optical stochastic cooling (OSC) is a promising technique for the cooling of dense particle beams. Its operation at optical frequencies enables obtaining a much larger bandwidth compared to the wellknown microwave-based stochastic cooling. In the OSC