ﻻ يوجد ملخص باللغة العربية
The ANTARES collaboration reported the results of a search for point-like neutrino sources using data taken in the period 2007-2010. An unbinned maximum likelihood based all-sky search yielded a cluster of 9 (5) events within a cone of 3 (1) degrees around (R.A., Dec) = (-46.5deg, -65.0deg). The trial factor corrected p-value of 2.6% (2.2 sigma) is not significant enough to claim the observation of an astrophysical point source. However, it currently constitutes the most significant localized neutrino excess observed by ANTARES. Here we present a multi-wavelength analysis including optical to X-ray archival data and a dedicated analysis of gamma-ray data from Fermi-LAT. In order to cover the TeV domain, dedicated observations with the H.E.S.S. telescope array were carried out. We present these data and discuss implications of the results in terms of signatures for a cosmic-ray acceleration site.
Star-forming regions are usually studied in the context of Galactic surveys, but dedicated observations are sometimes needed when the study reaches beyond the survey area. Here, we studied the G345.5+1.5 region, which is located slightly above the Ga
The ANTARES telescope is the largest underwater neutrino telescope existing at present. It is based on the detection of Cherenkov light produced in sea water by neutrino-induced muons. The detector, consisting of a tri-dimensional array of 885 photom
The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic
The ANTARES experiment is currently the largest underwater neutrino telescope. It is taking high quality data since 2007 and aims to detect high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. We wi
A novel method to analyse the spatial distribution of neutrino candidates recorded with the ANTARES neutrino telescope is introduced, searching for an excess of neutrinos in a region of arbitrary size and shape from any direction in the sky. Techniqu