ترغب بنشر مسار تعليمي؟ اضغط هنا

Status of the Monoscopic Analysis Chains for H.E.S.S. II

42   0   0.0 ( 0 )
 نشر من قبل Markus Holler
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

H.E.S.S. is a system of Imaging Atmospheric Cherenkov Telescopes (IACTs) measuring cosmic gamma-rays with very high energies in Namibia. Extending the array with a fifth telescope with a mirror area of 600 m$^2$ leads to a lower energy threshold as well as an increased sensitivity of the system. Moreover, it is now the first IACT array consisting of telescopes with different sizes. Low-energetic gamma-rays detected by the telescopes can either be analyzed monoscopically, allowing for a lower threshold, or stereoscopically, using hybrid events only which leads to a better reconstruction performance. We present the status of the monoscopic analysis of H.E.S.S. II events. In order to cross-check the results, we use two independent analysis chains, based on different reconstruction methods. The first method uses the second moments of the cleaned camera image (Hillas parameters) in order to deduce the properties of the primary particle. The background discrimination of this method can be optimized with multi-variate analysis techniques. The second method is based on the comparison of the camera image with the results of a semi-analytical model of the air shower using a Loglikelihood-Maximization. We present the status of these analysis efforts and their respective performances. One of the chains has been applied on real data of the Crab Nebula. All results shown here have to be considered preliminary.

قيم البحث

اقرأ أيضاً

The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiments sensitivity to lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray ene rgies below 100 GeV. Such an extension of the instruments energy range is particularly beneficial for studies of Active Galactic Nuclei with soft spectra, as expected for those at a redshift > 0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553+113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Multiple observational campaigns of PKS 2155-304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument. A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters. The energy spectra of PKS 2155-304 and PG 1553+113 were reconstructed down to energies of 80 GeV for PKS 2155-304, which transits near zenith, and 110 GeV for the more northern PG 1553+113. The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0 sigma statistical preference for non-zero curvature for PKS 2155-304 and 4.5 sigma for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E ~ 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155-304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.
H.E.S.S. is an array of five Imaging Atmospheric Cherenkov Telescopes (IACTs) located 1800 m above sea level in the Khomas Highland of Namibia and is sensitive to very-high-energy (VHE) gamma rays between tens of GeV to tens of TeV. The very-high bac kground rejection capabilities of IACTs provide excellent sensitivity of H.E.S.S. to GRBs. In this contribution the status of the H.E.S.S. GRB programme, already started in 2003, is reviewed. A highlight is the recent addition of the fifth telescope, which is the worlds largest IACT. Its 600 square metre mirror lowers the energy threshold to tens of GeV and provides an effective area that is ten thousands of times larger than Fermi-LAT at these energies. The higher performance drive system will reduce the response time to a GRB alert, which will significantly enhance the chances of a H.E.S.S. GRB detection. Recent results on selected GRBs will be shown.
Gamma-ray bursts (GRBs) are some of the most energetic and exotic events in the Universe, however their behaviour at the highest energies (>10 GeV) is largely unknown. Although the Fermi-LAT space telescope has detected several GRBs in this energy ra nge, it is limited by the relatively small collection area of the instrument. The H.E.S.S. experiment has now entered its second phase by adding a fifth telescope of 600 m$^{2}$ mirror area to the centre of the array. This new telescope increases the energy range of the array, allowing it to probe the sub-100 GeV range while maintaining the large collection area of ground based gamma-ray observatories, essential to probing short-term variability at these energies. We will present a description of the GRB observation scheme used by the H.E.S.S. experiment, summarising the behaviour and performance of the rapid GRB repointing system, the conditions under which potential GRB repointings are made and the data analysis scheme used for these observations.
Cosmic particles hitting Earths moon produce radio emission via the Askaryan effect. If the resulting radio ns-pulse can be detected by radio telescopes, this technique potentially increases the available collective area for ZeV scale particles by se veral orders of magnitude compared to current experiments. The LOw Frequency ARray (LOFAR) is the largest radio telescope operating in the optimum frequency regime for this technique. In this contribution, we report on the status of the implementation of the lunar detection mode at LOFAR.
The High Energy Stereoscopic System (H.E.S.S.) has been searching for counterparts of Gamma Ray Bursts (GRBs) for many years. In 2012 the system was upgraded with a fifth $28$ m diameter telescope (CT5) which is equipped with faster motors for rapid repointing, marking the start of the second phase of H.E.S.S. operation (H.E.S.S. II). CT5s large light collection area of $600,{rm m}^{2}$ improves the sensitivity to low-energy gamma-rays and even extends the energy range below $100$ GeV. The search for counterparts continues now in the energy range of tens of GeV to tens of TeV. A detection in this energy range would open a new window to the part of the spectrum of these highly energetic explosions which Fermi-LAT has only successfully detected in a reduced subset of events, with rather limited statistics. In the past years, H.E.S.S. has performed followup observations based on GRB detections by Swift-BAT and Fermi-GBM/-LAT. This Target of Opportunity observation program was carried out with a generalised Target of Opportunity Alert system. This contribution will highlight key features of the Target of Opportunity Alert system, present follow-up statistics of GRBs as well as detailed results of promising follow-up observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا