ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Limits on Primordial Black Hole Dark Matter from the First Two Years of Kepler Data

353   0   0.0 ( 0 )
 نشر من قبل Kim Griest
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis on our new limits of the dark matter (DM) halo consisting of primordial black holes (PBHs) or massive compact halo objects (MACHOs). We present a search of the first two years of publicly available Kepler mission data for potential signatures of gravitational microlensing caused by these objects, as well as an extensive analysis of the astrophysical sources of background error. These include variable stars, flare events, and comets or asteroids which are moving through the Kepler field. We discuss the potential of detecting comets using the Kepler lightcurves, presenting measurements of two known comets and one unidentified object, most likely an asteroid or comet. After removing the background events with statistical cuts, we find no microlensing candidates. We therefore present our Monte Carlo efficiency calculation in order to constrain the PBH DM with masses in the range of 2 x 10^-9 solar masses to 10^-7 solar masses. We find that PBHs in this mass range cannot make up the entirety of the DM, thus closing a full order of magnitude in the allowed mass range for PBH DM.


قيم البحث

اقرأ أيضاً

Dark matter coupled solely gravitationally can be produced through the decay of primordial black holes in the early universe. If the dark matter is lighter than the initial black hole temperature, it could be warm enough to be subject to structure fo rmation constraints. In this paper we perform a more precise determination of these constraints. We first evaluate the dark matter phase-space distribution, without relying on the instantaneous decay approximation. We then interface this phase-space distribution with the Boltzmann code CLASS to extract the corresponding matter power spectrum, which we find to match closely those of warm dark matter models, albeit with a different dark matter mass. This mapping allows us to extract constraints from Lyman-$alpha$ data without the need to perform hydrodynamical simulations. We robustly rule out the possibility, consistent with previous analytic estimates, of primordial black holes having come to dominate the energy density of the universe and simultaneously given rise to all the DM through their decay. Consequences and implications for dark radiation and leptogenesis are also briefly discussed.
If the Dark Matter consists of primordial black holes (PBHs), we show that gravitational lensing of stars being monitored by NASAs Kepler search for extra-solar planets can cause significant numbers of detectable microlensing events. A search through the roughly 150,000 lightcurves would result in large numbers of detectable events for PBHs in the mass range $5 ten{-10}msun$ to $aten{-4}msun$. Non-detection of these events would close almost two orders of magnitude of the mass window for PBH dark matter. The microlensing rate is higher than previously noticed due to a combination of the exceptional photometric precision of the Kepler mission and the increase in cross section due to the large angular sizes of the relatively nearby Kepler field stars. We also present a new formalism for calculating optical depth and microlensing rates in the presence of large finite-source effects.
Primordial magnetic field (PMF) is one of the feasible candidates to explain observed large-scale magnetic fields, for example, intergalactic magnetic fields. We present a new mechanism that brings us information about PMFs on small scales based on t he abundance of primordial black holes (PBHs). The anisotropic stress of the PMFs can act as a source of the super-horizon curvature perturbation in the early universe. If the amplitude of PMFs is sufficiently large, the resultant density perturbation also has a large amplitude, and thereby, the PBH abundance is enhanced. Since the anisotropic stress of the PMFs is consist of the square of the magnetic fields, the statistics of the density perturbation follows the non-Gaussian distribution. Assuming Gaussian distributions and delta-function type power spectrum for PMFs, based on a Monte-Carlo method, we obtain an approximate probability density function of the density perturbation, and it is an important piece to relate the amplitude of PMFs with the abundance of PBHs. Finally, we place the strongest constraint on the amplitude of PMFs as a few hundred nano-Gauss on $10^{2};{rm Mpc}^{-1} leq kleq 10^{18};{rm Mpc}^{-1}$ where the typical cosmological observations never reach.
We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with $m_{BH}gtrsim 5~M_{odot}$ are disfavored. However, this is susceptible to sizeable uncertainties due to the treatment of the black hole accretion process. These constraints are weaker than those quoted in earlier literature for the same observables.
We investigate a possibility of primordial black hole (PBH) formation with a hierarchical mass spectrum in multiple phases of inflation. As an example, we find that one can simultaneously realize a mass spectrum which has recently attracted a lot of attention: stellar-mass PBHs ($simmathcal{O}(10)M_odot$) as a possible source of binary black holes detected by LIGO/Virgo collaboration, asteroid-mass ($simmathcal{O}(10^{-12})M_odot$) as a main component of dark matter, and earth-mass ($simmathcal{O}(10^{-5})M_odot$) as a source of ultrashort-timescale events in Optical Gravitational Lensing Experiment microlensing data. The recent refined de Sitter swampland conjecture may support such a multi-phase inflationary scenario with hierarchical mass PBHs as a transition signal of each inflationary phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا