ﻻ يوجد ملخص باللغة العربية
We propose a new dynamical method to estimate binary mass ratios by using the period of superhumps in SU UMa-type dwarf novae during the growing stage (the stage A superhumps). This method is based on a working hypothesis in which the period of the superhumps at the growing stage is determined by the dynamical precession rate at the 3:1 resonance radius, a picture suggested in our new interpretation of the superhump period evolution during the superoutburst (Osaki, Kato 2013, arXiv:1305.5877). By comparison with the objects with known mass ratios, we show that our method can provide sufficiently accurate mass ratios comparable to those obtained by quiescent eclipse observations. This method is very advantageous in that it requires neither eclipses, nor an experimental calibration. It is particularly suited for exploring the low mass-ratio end of the evolution of cataclysmic variables, where the secondary is undetectable by conventional methods. Our analysis suggests that previous estimates of mass ratios using superhump periods during superoutburst were systematically underestimated for low mass-ratio systems and we provided a new calibration. It suggests that most of WZ Sge-type dwarf novae have secondaries close to the border of the lower main-sequence and brown dwarfs, and most of the objects have not yet reached the evolutionary stage of period bouncers. Our result is not in contradiction with an assumption that the observed minimum period (~77 min) of ordinary hydrogen-rich cataclysmic variables is indeed the period minimum. We highlight the importance of early observation of stage A superhumps and propose a future desirable strategy of observation.
Binary properties are usually expressed (for good observational reasons) as a function of primary mass. It has been found that the distribution of companion masses -- the mass ratio distribution -- is different for different primary masses. We argue
We present a new, simple method to predict activity-induced radial velocity variations using high-precision time-series photometry. It is based on insights from a simple spot model, has only two free parameters (one of which can be estimated from the
The increase in the number of Type Ia supernovae (SNe,Ia) has demonstrated that the population shows larger diversity than has been assumed in the past. The reasons (e.g. parent population, explosion mechanism) for this diversity remain largely unkno
We present a method to build a probability density function (pdf) for the age of a star based on its peculiar velocities $U$, $V$ and $W$ and its orbital eccentricity. The sample used in this work comes from the Geneva-Copenhagen Survey (GCS) which c
We present sensitive, arcsecond-resolution Submillimeter Array observations of the 12CO J=2-1 line emission from the circumstellar disk orbiting the double-lined spectroscopic binary star V4046 Sgr. Based on a simple model of the disk structure, we u