ترغب بنشر مسار تعليمي؟ اضغط هنا

A Mini X-Ray Survey of Sub-DLAs; Searching for AGNs Formed in Protogalaxies

39   0   0.0 ( 0 )
 نشر من قبل George Chartas
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A significant fraction of the sub-damped Lyman-alpha (sub-DLA) absorption systems in quasar spectra appear to be metal-rich, many with even super-solar element abundances. This raises the question whether some sub-DLAs may harbor active galactic nuclei (AGN) since supersolar metallicities are observed in AGN. Here we investigate this question based on a mini-survey of 21 quasars known to contain sub-DLAs in their spectra. The X-ray observations were performed with the Chandra X-ray Observatory. In cases of no detection we estimated upper limits of the X-ray luminosities of possible AGNs at the redshifts of the sub-DLAs. In six cases we find possible X-ray emission within ~ 1 arcsec of the background quasar consistent with the presence of a nearby X-ray source. If these nearby X-ray sources are at the redshifts of the sub-DLAs, their estimated 0.2-10 keV luminosities range between 0.8 x 10^{44}h^{-2} and 4.2 x 10^{44}h^{-2} erg s^{-1}, thus ruling out a normal late-type galaxy origin, and suggesting that the emission originates in a galactic nucleus near the center of a protogalaxy. The projected distances of these possible nearby X-ray sources from the background quasars lie in the range of 3-7 h^{-1} kpc, consistent with our hypothesis that they represent AGNs centered on the sub-DLAs. Deeper follow-up X-ray and optical observations are required to confirm the marginal detections of X-rays from these sub-DLA galaxies.

قيم البحث

اقرأ أيضاً

We present the first search for galaxy counterparts of intervening high-z (2<z< 3.6) sub-DLAs and DLAs towards GRBs. Our final sample comprises of five intervening sub-DLAs and DLAs in four GRB fields. To identify candidate galaxy counterparts of the absorbers we use deep optical and near-infrared imaging, and low-, mid- and high-resolution spectroscopy acquired with 6 to 10-m class telescopes, the Hubble and the Spitzer space telescopes. Furthermore, we use the spectroscopic information and spectral-energy-distribution fitting techniques to study them in detail. Our main result is the detection and spectroscopic confirmation of the galaxy counterpart of the intervening DLA at z=3.096 in the field of GRB 070721B (z_GRB=3.6298) as proposed by other authors. We also identify good candidates for the galaxy counterparts of the two strong MgII absorbers at z=0.6915 and 1.4288 towards GRB 050820A (z_GRB=2.615). The properties of the detected DLA galaxy are typical for Lyman-break galaxies (LBGs) at similar redshifts; a young, highly starforming galaxy that shows evidence for a galactic outflow. This supports the hypothesis that a DLA can be the gaseous halo of an LBG. In addition, we report a redshift coincidence of different objects associated with metal lines in the same field, separated by 130-161 kpc. The high detection rate of three correlated structures on a length scale as small as ~150 kpc in two pairs of lines of sight is intriguing. The absorbers in each of these are most likely not part of the same gravitationally bound structure. They more likely represent groups of galaxies.
106 - L. Morelli , V. Calvi , N. Masetti 2013
The aim of this paper is to study the stellar population of galaxies hosting an active galactic nucleus (AGN). We studied a sub-sample of hard X-ray emitting AGNs from the INTEGRAL and Swift catalogs which were previously identified and characterized through optical spectroscopy. Our analysis provides complementary information, namely age and metallicity, which is necessary to complete the panoramic view of such interesting objects. We selected hard X-ray emitting objects identified as AGNs by checking their optical spectra in search for absorption lines suitable for the stellar population analysis. We obtained a final sample consisting of 20 objects with redshift lower than 0.3. We used the full-spectrum fitting method and, in particular, the penalized pixel one applying the PPXF code. After masking all the regions affected by emission lines, we fitted the spectra with the MILES single stellar population templates and we derived mass-weighted ages and metallicities. Most of the objects in our sample show an old stellar population, but three of them are characterized by a bimodal distribution with a non negligible contribution from young stars. The values of the mass-weighted metallicity span a large range of metallicity with most of them slightly above the solar value. No relations between the stellar population properties and the morphological ones have been found.
We report on a new method to identify Active Galactic Nuclei (AGN) among unidentified INTEGRAL sources. This method consists of cross-correlating unidentified sources listed in the fourth IBIS Survey Catalogue first with infrared and then with radio catalogues and a posteriori verifying, by means of X-ray and optical follow up observations, the likelihood of these associations. In order to test this method, a sample of 8 sources has been extracted from the fourth IBIS Catalogue. For 7 sources of the sample we obtained an identification, whereas the last one (IGR J03103+5706) has insufficient information for a clear classification and deserves more in-depth study. We identified three objects (IGR J08190-3835, IGR J17520-6018, IGR J21441+4640) as AGNs and suggest that three more (IGR J00556+7708, IGRJ17219-1509, IGR J21268+6203) are likely active galaxies on the basis of their radio spectra, near-infrared photometry and location above the Galaxy plane. One source (IGR J05583-1257) has been classified as a starburst galaxy but it might have been spuriously associated with the INTEGRAL detection.
194 - Celine Peroux 2001
Quasar absorbers provide a powerful observational tool with which to probe both galaxies and the intergalactic medium up to high redshift. We present a study of the evolution of the column density distribution, f(N,z), and total neutral hydrogen mass in high-column density quasar absorbers using data from a recent high-redshift survey for damped Lyman-alpha (DLA) and Lyman limit system (LLS) absorbers. Whilst in the redshift range 2 to 3.5, ~90% of the neutral HI mass is in DLAs, we find that at z>3.5 this fraction drops to only 55% and that the remaining missing mass fraction of the neutral gas lies in sub-DLAs with N(HI) 10^{19} - 2 * 10^{20} cm^{-2}.
We present one of the most precise measurement to date of the spatial clustering of X-ray selected AGNs using a sample derived from the Chandra X-ray Observatory survey in the Bootes field. The real-space two-point correlation function over a redshif t interval from z=0.17 to z~3 is well described by the power law, xi(r)=(r/r0)^-gamma, for comoving separations r<~20h^-1 Mpc. We find gamma=1.84+-0.12 and r0 consistent with no redshift trend within the sample (varying between r0=5.5+-0.6 h^-1 Mpc for <z>=0.37 and r0=6.9+-1.0 h^-1 Mpc for <z>=1.28). Further, we are able to measure the projections of the two-point correlation function both on the sky plane and in the line of sight. We use these measurements to show that the Chandra/Bootes AGNs are predominantly located at the centers of dark matter halos with the circular velocity Vmax>320 km/s or M_200 > 4.1e12 h^-1 Msun, and tend to avoid satellite galaxies in halos of this or higher mass. The halo occupation properties inferred from the clustering properties of Chandra/Bootes AGNs --- the mass scale of the parent dark matter halos, the lack of significant redshift evolution of the clustering length, and the low satellite fraction --- are broadly consistent with the Hopkins et al. scenario of quasar activity triggered by mergers of similarly-sized galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا