ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal thermopower of bad metals

54   0   0.0 ( 0 )
 نشر من قبل Jim Freericks
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Zlatic




اسأل ChatGPT حول البحث

Bad metals have a large linear resistivity at high-T that is universally seen in oxides close to the Mott-Hubbard insulating phase. They also have an universal thermopower alpha(T): (i) at very low doping (lightly doped) alpha(T) has a pronounced low-T peak that shifts to higher-T with doping; (ii) at moderate doping (underdoped) alpha(T) has a small low-T peak that shifts to lower-T with doping and has a high-T sign change; and (iii) at the highest doping (overdoped) alpha(T) is negative and depends monotonically on T. Here we show that the simplified Hubbard model provides an easy to understand description of this phenomena due to the universal form for the chemical potential versus T for doped Mott insulators and the applicability of the Kelvin formula for the thermopower.

قيم البحث

اقرأ أيضاً

260 - Wataru Kobayashi 2021
High-temperature thermopower is interpreted as entropy that a carrier carries. Owing to spin and orbital degrees of freedom, a transition metal perovskite exhibits large thermopower at high temperatures. In this paper, we revisit the high-temperature thermopower in the perovskites to shed light on the degrees of freedom. Thus, we theoretically derive an expression of thermopower in one-dimensional octahedral-MX6-clusters chain using linear-response theory and electronic structure calculation of the chain based on the tight-binding approximation. The derived expression of the thermopower is consistent with the extended Heikes formula and well reproduced experimental data of several perovskite oxides at high temperatures. In this expression, a degeneracy of many electron states in octahedral ligand field (which is characterized by multiplet term) appears instead of the spin and orbital degeneracies. Complementarity in between our expression and the extended Heikes formula is discussed.
We report giant thermopower S = 2.5 mV/K in CoSbS single crystals, a material that shows strong high-temperature thermoelectric performance when doped with Ni or Se. Changes of low temperature thermopower induced by magnetic field point to mechanism of electronic diffusion of carriers in the heavy valence band. Intrinsic magnetic susceptibility is consistent with the Kondo- Insulator-like accumulation of electronic states around the gap edges. This suggests that giant thermopower stems from temperature-dependent renormalization of the non-interacting bands and buildup of the electronic correlations on cooling.
We investigated the thermoelectric transport properties of EuNi2P2 and EuIr2Si2 in order to evaluate the relevance of Kondo interaction and valence fluctuations in these materials. While the thermal conductivities behave conventionally, the thermopow er curves exhibit large values with pronounced maxima as typically observed in Ce- and Yb-based heavy-fermion materials. However, neither the positions of these maxima nor the absolute thermopower values at low temperature are in line with the heavy-fermion scenario and the moderately enhanced effective charge carrier masses. Instead, we may relate the thermopower in our materials to the temperature-dependent Eu valence by taking into account changes in the chemical potential. Our analysis confirms that valence fluctuations play an important role in EuNi2P2 and EuIr2Si2.
271 - I. Pallecchi , F. Telesio , D. Li 2015
Understanding the nature of charge carriers at the LaAlO3/SrTiO3 interface is one of the major open issues in the full comprehension of the charge confinement phenomenon in oxide heterostructures. Here, we investigate thermopower to study the electro nic structure in LaAlO3/SrTiO3 at low temperature as a function of gate field. In particular, under large negative gate voltage, corresponding to the strongly depleted charge density regime, thermopower displays record-high negative values of the order of 10^4 - 10^5 microV/K, oscillating at regular intervals as a function of the gate voltage. The huge thermopower magnitude can be attributed to the phonon-drag contribution, while the oscillations map the progressive depletion and the Fermi level descent across a dense array of localized states lying at the bottom of the Ti 3d conduction band. This study is the first direct evidence of a localized Anderson tail in the two-dimensional (2D) electron liquid at the LaAlO3/SrTiO3 interface.
We investigated the effect of pressure on the magnetic and thermoelectric properties of Sr$_{3.1}$Y$_{0.9}$Co$_{4}$O$_{10+delta }$. The magnetization is reduced with the application of pressure, reflecting the spin-state modification of the Co$^{3+}$ ions into the nonmagnetic low-spin state. Accordingly, with increasing pressure, the Seebeck coefficient is enhanced, especially at low temperatures, at which the effect of pressure on the spin state becomes significant. These results indicate that the spin-orbital entropy is a key valuable for the thermoelectric properties of the strongly correlated cobalt oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا