ترغب بنشر مسار تعليمي؟ اضغط هنا

The SL2S Galaxy-scale Lens Sample. III. Lens Models, Surface Photometry and Stellar Masses for the final sample

120   0   0.0 ( 0 )
 نشر من قبل Alessandro Sonnenfeld
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Hubble Space Telescope (HST) imaging data and CFHT Near IR ground-based images for the final sample of 56 candidate galaxy-scale lenses uncovered in the CFHT Legacy Survey as part of the Strong Lensing in the Legacy Survey (SL2S) project. The new images are used to perform lens modeling, measure surface photometry, and estimate stellar masses of the deflector early-type galaxies. Lens modeling is performed on the HST images (or CFHT when HST is not available) by fitting the spatially extended light distribution of the lensed features assuming a singular isothermal ellipsoid mass profile and by reconstructing the intrinsic source light distribution on a pixelized grid. Based on the analysis of systematic uncertainties and comparison with inference based on different methods we estimate that our Einstein Radii are accurate to sim3%. HST imaging provides a much higher success rate in confirming gravitational lenses and measuring their Einstein radii than CFHT imaging does. Lens modeling with ground-based images however, when successful, yields Einstein radius measurements that are competitive with spaced-based images. Information from the lens models is used together with spectroscopic information from the companion paper IV to classify the systems, resulting in a final sample of 39 confirmed (grade-A) lenses and 17 promising candidates. The redshifts of the main deflector span a range 0.3<zd< 0.8, providing an excellent sample for the study of the cosmic evolution of the mass distribution of early-type galaxies over the second half of the history of the Universe.

قيم البحث

اقرأ أيضاً

We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the Universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the SL2S and SLACS survey s and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar IMF across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of an NFW profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at $log{M_*} = 11.5$ and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.
We present the second report of our systematic search for strongly lensed quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive follow-up observations of 136 candidate objects, we find 36 lenses in the full sample of 77,429 spe ctroscopically confirmed quasars in the SDSS Data Release 5. We then define a complete sample of 19 lenses, including 11 from our previous search in the SDSS Data Release 3, from the sample of 36,287 quasars with i<19.1 in the redshift range 0.6<z<2.2, where we require the lenses to have image separations of 1<theta<20 and i-band magnitude differences between the two images smaller than 1.25 mag. Among the 19 lensed quasars, 3 have quadruple-image configurations, while the remaining 16 show double images. This lens sample constrains the cosmological constant to be Omega_Lambda=0.84^{+0.06}_{-0.08}(stat.)^{+0.09}_{-0.07}(syst.) assuming a flat universe, which is in good agreement with other cosmological observations. We also report the discoveries of 7 binary quasars with separations ranging from 1.1 to 16.6, which are identified in the course of our lens survey. This study concludes the construction of our statistical lens sample in the full SDSS-I data set.
113 - Adam S. Bolton 2008
We present the definitive data for the full sample of 131 strong gravitational lens candidates observed with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope by the Sloan Lens ACS (SLACS) Survey. All targets were selected for h igher-redshift emission lines and lower-redshift continuum in a single Sloan Digital Sky Survey (SDSS) spectrum. The foreground galaxies are primarily of early-type morphology, with redshifts from approximately 0.05 to 0.5 and velocity dispersions from 160 km/s to 400 km/s; the faint background emission-line galaxies have redshifts ranging from about 0.2 to 1.2. We confirm 70 systems showing clear evidence of multiple imaging of the background galaxy by the foreground galaxy, as well as an additional 19 systems with probable multiple imaging. For 63 clear lensing systems, we present singular isothermal ellipsoid and light-traces-mass gravitational lens models fitted to the ACS imaging data. These strong-lensing mass measurements are supplemented by magnitudes and effective radii measured from ACS surface-brightness photometry and redshifts and velocity dispersions measured from SDSS spectroscopy. These data constitute a unique resource for the quantitative study of the inter-relations between mass, light, and kinematics in massive early-type galaxies. We show that the SLACS lens sample is statistically consistent with being drawn at random from a parent sample of SDSS galaxies with comparable spectroscopic parameters and effective radii, suggesting that the results of SLACS analyses can be generalized to the massive early-type population.
Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the me asurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $Lambda$CDM and $w$CDM. In $Lambda$CDM we obtain for the matter density $Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $Omega_m-S_8$ plane by $31%$ and in the $Omega_m-w$ plane by $41%$ while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt).
74 - Adam S. Bolton 2012
We present an analysis of the evolution of the central mass-density profile of massive elliptical galaxies from the SLACS and BELLS strong gravitational lens samples over the redshift interval z ~ 0.1-0.6, based on the combination of strong-lensing a perture mass and stellar velocity-dispersion constraints. We find a significant trend towards steeper mass profiles (parameterized by the power-law density model with rho ~ r^[-gamma]) at later cosmic times, with magnitude d<gamma>/dz = -0.60 +/- 0.15. We show that the combined lens-galaxy sample is consistent with a non-evolving distribution of stellar velocity dispersions. Considering possible additional dependence of <gamma> on lens-galaxy stellar mass, effective radius, and Sersic index, we find marginal evidence for shallower mass profiles at higher masses and larger sizes, but with a significance that is sub-dominant to the redshift dependence. Using the results of published Monte Carlo simulations of spectroscopic lens surveys, we verify that our mass-profile evolution result cannot be explained by lensing selection biases as a function of redshift. Interpreted as a true evolutionary signal, our result suggests that major dry mergers involving off-axis trajectories play a significant role in the evolution of the average mass-density structure of massive early-type galaxies over the past 6 Gyr. We also consider an alternative non-evolutionary hypothesis based on variations in the strong-lensing measurement aperture with redshift, which would imply the detection of an inflection zone marking the transition between the baryon-dominated and dark-matter halo-dominated regions of the lens galaxies. Further observations of the combined SLACS+BELLS sample can constrain this picture more precisely, and enable a more detailed investigation of the multivariate dependences of galaxy mass structure across cosmic time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا