ﻻ يوجد ملخص باللغة العربية
From the 27th to the 28th January 2009, the Cassini spacecraft remotely acquired combined observations of Saturns southern aurorae at radio, ultraviolet and infrared wavelengths, while monitoring ion injections in the middle magnetosphere from energetic neutral atoms. Simultaneous measurements included the sampling of a full planetary rotation, a relevant timescale to investigate auroral emissions driven by processes internal to the magnetosphere. In addition, this interval coincidently matched a powerful substorm-like event in the magnetotail, which induced an overall dawnside intensification of the magnetospheric and auroral activity. We comparatively analyze this unique set of measurements to reach a comprehensive view of kronian auroral processes over the investigated timescale. We identify three source regions in atmospheric aurorae, including a main oval associated with the bulk of Saturn Kilometric Radiation (SKR), together with polar and equatorward emissions. These observations reveal the co-existence of corotational and sub-corototational dynamics of emissions associated with the main auroral oval. Precisely, we show that the atmospheric main oval hosts short-lived sub-corotating isolated features together with a bright, longitudinally extended, corotating region locked at the southern SKR phase. We assign the susbtorm-like event to a regular, internally driven, nightside ion injection possibly triggerred by a plasmoid ejection. We also investigate the total auroral energy budget, from the power input to the atmosphere, characterized by precipitating electrons up to 20 keV, to its dissipation through the various radiating processes. Finally, through simulations, we confirm the search-light nature of the SKR rotational modulation and we show that SKR arcs relate to isolated auroral spots. The resulting findings are discussed in the frame of pending questions.
We present an analysis of recent high spatial and spectral resolution ground-based infrared observations of H3+ spectra obtained with the 10-metre Keck II telescope in April 2011. We observed H3+ emission from Saturns northern and southern auroral re
We present simultaneous HST WFC3 + Spitzer IRAC variability monitoring for the highly-variable young ($sim$20 Myr) planetary-mass object PSO J318.5-22. Our simultaneous HST + Spitzer observations covered $sim$2 rotation periods with Spitzer and most
Normal mode oscillations in Saturn excite density and bending waves in the C Ring, providing a valuable window into the planets interior. Saturns fundamental modes (f modes) excite the majority of the observed waves, while gravito-inertial modes (rot
Accurate measurements of the physical characteristics of a large number of exoplanets are useful to strongly constrain theoretical models of planet formation and evolution, which lead to the large variety of exoplanets and planetary-system configurat
The field of exoplanets has rapidly expanded from the exclusivity of exoplanet detection to include exoplanet characterization. A key step towards this characterization will be retrieval of planetary albedos and rotation rates from highly undersample