ترغب بنشر مسار تعليمي؟ اضغط هنا

Dielectric Coatings for IACT Mirrors

104   0   0.0 ( 0 )
 نشر من قبل Andreas Foerster
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Forster




اسأل ChatGPT حول البحث

Imaging Atmospheric Cherenkov Telescopes for very-high energy gamma-ray astronomy need mirror with high reflectance roughly in the wavelength between 300 and 550 nm. The current standard reflective layer of such mirrors is aluminum. Being permanently exposed to the environment they show a constant degradation over the years. New and improved dielectric coatings have been developed to enhance their resistance to environmental impact and to extend their possible lifetime. In addition, these customized coatings have an increased reflectance of over 95% and are designed to significantly lower the night-sky background contribution. The development of such coatings for mirrors with areas up to 2 m2 and low application temperatures to suite the composite materials used for the new mirror susbtrates of the Cherenkov Telescope Array (CTA) and the results of extensive durability tests are presented.



قيم البحث

اقرأ أيضاً

102 - A.Fiasson , F.Dubois , G.Lamanna 2010
Multivariate methods have been recently introduced and successfully applied for the discrimination of signal from background in the selection of genuine very-high energy gamma-ray events with the H.E.S.S. Imaging Atmospheric Cerenkov Telescope. The c omplementary performance of three independent reconstruction methods developed for the H.E.S.S. data analysis, namely Hillas, model and 3D-model suggests the optimization of their combination through the application of a resulting efficient multivariate estimator. In this work the boosted decision tree method is proposed leading to a significant increase in the signal over background ratio compared to the standard approaches. The improved sensitivity is also demonstrated through a comparative analysis of a set of benchmark astrophysical sources.
3D printing, also called additive manufacturing, offers a new vision for optical fabrication in term of achievable optical quality and reduction of weight and cost. In this paper we describe two different ways to use this technique in the fabrication process. The first method makes use of 3D printing in the fabrication of warping harnesses for stress polishing, and we apply that to the fabrication of the WFIRST coronagraph off axis parabolas. The second method considers a proof of concept for 3D printing of lightweight X-Ray mirrors, targeting the next generation of X-rays telescopes. Stress polishing is well suited for the fabrication of the high quality off axis parabolas required by the coronagraph to image exoplanets.. Here we describe a new design of warping harness which can generate astigmatism and coma with only one actuator. The idea is to incorporate 3D printing in the manufacturing of the warping harness. The method depicted in this paper demonstrates that we reach the tight precision required at the mirrors surface. Moreover the error introduced by the warping harness fabricated by 3D printing does not impact the final error budget. Concerning the proof of concept project, we investigate 3D printing towards lightweight X-ray mirrors. We present the surface metrology of test samples fabricated by stereo lithography (SLA) and Selective Laser Sintering (SLS) with different materials. The lightweighting of the samples is composed of a series of arches. By complementing 3D printing with finite element analysis topology optimization we can simulate a specific optimum shape for the given input parameters and external boundary conditions. The next set of prototypes is designed taking to account the calculation of topology optimisation.
The Cherenkov Telescope Array (CTA) is a forthcoming international ground-based observatory for very high-energy gamma rays. Its goal is to reach sensitivity five to ten times better than existing Cherenkov telescopes such as VERITAS, H.E.S.S. or MAG IC and extend the range of observation to energies down to few tens of GeV and beyond 100 TeV. To achieve this goal, an array of about 100 telescopes is required, meaning a total reflective surface of several thousands of square meters. Thence, the optimal technology used for CTA mirrors manufacture should be both low-cost (~1000 euros/m2) and allow high optical performances over the 300-550 nm wavelength range. More exactly, a reflectivity higher than 85% and a PSF (Point Spread Function) diameter smaller than 1 mrad. Surface roughness can significantly contribute to PSF broadening and limit telescope performances. Fortunately, manufacturing techniques for mirrors are now available to keep the optical scattering well below the geometrically-predictable effect of figure errors. This paper determines first order surface finish tolerances based on a surface microroughness characterization campaign, using Phase Shift Interferometry. That allows us to compute the roughness contribution to Cherenkov telescope PSF. This study is performed for diverse mirror candidates (MAGIC-I and II, ASTRI, MST) varying in manufacture technologies, selected coating materials and taking into account the degradation over time due to environmental hazards.
Multimaterial optical coatings are a promising viable option to meet the challenging requirements (in terms of transmittance, absorbance and thermal noise) of next generation gravitational wave detector mirrors. In this paper we focus on ternary coat ings consisting of quarter-wavelength thick layers, where a third material (H) is added to the two presently in use, namely Silica (L) and Titania-doped Tantala (H), featuring higher dielectric contrast (against Silica), and lower thermal noise (compared to Titania-doped Tantala), but higher optical losses. We seek the optimal material sequences, featuring minimal thermal (Brownian) noise under prescribed transmittance and absorbance constraints, by exhaustive simulation over all possible configurations, for different values (in a meaningful range) of the optical density and extinction coefficient of the third material. In all cases studied, the optimal designs consist of a stack of (H|L) doublets topped by a stack of (H|L) doublets, confirming previous heuristic assumptions, and the achievable coating noise power spectral density reduction factor is sim 0.5. The robustness of the found optimal designs against layer thickness deposition errors and uncertainties and/or fluctuations in the optical losses of the third material is also investigated. Possible margins for further thermal noise reduction by layer thickness optimization, and strategies to implement it, are discussed.
The desire for higher sensitivity has driven ground-based cosmic microwave background (CMB) experiments to employ ever larger focal planes, which in turn require larger reimaging optics. Practical limits to the maximum size of these optics motivates the development of quasi-optically-coupled (lenslet-coupled), multi-chroic detectors. These detectors can be sensitive across a broader bandwidth compared to waveguide-coupled detectors. However, the increase in bandwidth comes at a cost: the lenses (up to $sim$700 mm diameter) and lenslets ($sim$5 mm diameter, hemispherical lenses on the focal plane) used in these systems are made from high-refractive-index materials (such as silicon or amorphous aluminum oxide) that reflect nearly a third of the incident radiation. In order to maximize the faint CMB signal that reaches the detectors, the lenses and lenslets must be coated with an anti-reflective (AR) material. The AR coating must maximize radiation transmission in scientifically interesting bands and be cryogenically stable. Such a coating was developed for the third generation camera, SPT-3G, of the South Pole Telescope (SPT) experiment, but the materials and techniques used in the development are general to AR coatings for mm-wave optics. The three-layer polytetrafluoroethylene-based AR coating is broadband, inexpensive, and can be manufactured with simple tools. The coating is field tested; AR coated focal plane elements were deployed in the 2016-2017 austral summer and AR coated reimaging optics were deployed in 2017-2018.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا