ﻻ يوجد ملخص باللغة العربية
In the current view of Gamma-Ray Burst (GRB) phenomena, an emission component extending up to the very-high energy (VHE, E > 30 GeV) domain is though to be a relatively common feature at least in the brightest events. This leads to an unexpected richness of possible theoretical models able to describe such phenomenology. Hints of emission at tens of GeV are indeed known since the EGRET observations during the 90s and confirmed in the Fermi-LAT data. However, our comprehension of these phenomena is still far to be satisfactory. In this respect, the VHE characterization of GRBs may constitute a breakthrough for understanding their physics and, possibly, for providing decisive clues for the discrimination among different proposed emission mechanisms, which are barely distinguishable at lower energies. The current generation of Cherenkov observatories, such as the MAGIC telescopes, have opened the possibility to extend the measurement of GRB emission, and in general to any short time-scale transient phenomena, fromfew tens of GeV up to the TeV energy range, with a higher sensitivity with respect to gamma-ray space-based instruments. In the near future, a crucial role for the VHE observations of GRBs will be played by the Cherenkov Telescope Array (CTA), thanks to its about one order of magnitude better sensitivity and lower energy threshold with respect to current instruments. In this contribution, we present a method aimed at providing VHE detection prospects for observations of GRB-like transient events with Cherenkov telescopes. In particular, we consider the observation of the transient event GRB 090102 as a test case for the method and show the achieved detection prospects under different observational conditions for the MAGIC telescopes and CTA.
Gamma-ray Bursts (GRB) were discovered by satellite-based detectors as powerful sources of transient $gamma$-ray emission. The Fermi satellite detected an increasing number of these events with its dedicated Gamma-ray Burst Monitor (GBM), some of whi
The Cherenkov Telescope Array (CTA) will be the next generation ground-based observatory for very-high-energy (VHE) gamma-ray astronomy, with the deployment of tens of highly sensitive and fast-reacting Cherenkov telescopes. It will cover a wide ener
The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the VHE gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude
Next generation radio telescopes, namely the Five-hundred-meter Aperture Spherical Telescope (FAST) and the Square Kilometer Array (SKA), will revolutionize the pulsar timing arrays (PTAs) based gravitational wave (GW) searches. We review some of the
High precision astrometry provides the foundation to resolve many fundamental problems in astrophysics. The application of astrometric studies spans a wide range of fields, and has undergone enormous growth in recent years. This is as a consequence o