ترغب بنشر مسار تعليمي؟ اضغط هنا

The stability of tidally deformed neutron stars to three- and four-mode coupling

67   0   0.0 ( 0 )
 نشر من قبل Tejaswi Venumadhav
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has recently been suggested that the tidal deformation of a neutron star excites daughter p- and g-modes to large amplitudes via a quasi-static instability. This would remove energy from the tidal bulge, resulting in dissipation and possibly affecting the phase evolution of inspiralling binary neutron stars and hence the extraction of binary parameters from gravitational wave observations. This instability appears to arise because of a large three-mode interaction among the tidal mode and high-order p- and g-modes of similar radial wavenumber. We show that additional four-mode interactions enter into the analysis at the same order as the three-mode terms previously considered. We compute these four-mode couplings by finding a volume-preserving coordinate transformation that relates the energy of a tidally deformed star to that of a radially perturbed spherical star. Using this method, we relate the four-mode coupling to three-mode couplings and show that there is a near-exact cancellation between the destabilizing effect of the three-mode interactions and the stabilizing effect of the four-mode interaction. We then show that the equilibrium tide is stable against the quasi-static decay into daughter p- and g-modes to leading order. The leading deviation from the quasi-static approximation due to orbital motion of the binary is considered; while it may slightly spoil the near-cancellation, any resulting instability timescale is at least of order the gravitational-wave inspiral time. We conclude that the p-/g-mode coupling does not lead to a quasi-static instability, and does not impact the phase evolution of gravitational waves from binary neutron stars.

قيم البحث

اقرأ أيضاً

284 - Fabian Gittins 2021
With the remarkable advent of gravitational-wave astronomy, we have shed light on previously shrouded events: compact binary coalescences. Neutron stars are promising (and confirmed) sources of gravitational radiation and it proves timely to consider the ways in which these stars can be deformed. Gravitational waves provide a unique window through which to examine neutron-star interiors and learn more about the equation of state of ultra-dense nuclear matter. In this work, we study two relevant scenarios for gravitational-wave emission: neutron stars that host (non-axially symmetric) mountains and neutron stars deformed by the tidal field of a binary partner. Although they have yet to be seen with gravitational waves, rotating neutron stars have long been considered potential sources. By considering the observed spin distribution of accreting neutron stars with a phenomenological model for the spin evolution, we find evidence for gravitational radiation in these systems. We study how mountains are modelled in both Newtonian and relativistic gravity and introduce a new scheme to resolve issues with previous approaches to this problem. The crucial component of this scheme is the deforming force that gives the star its non-spherical shape. We find that the force (which is a proxy for the stars formation history), as well as the equation of state, plays a pivotal role in supporting the mountains. Considering a scenario that has been observed with gravitational waves, we calculate the structure of tidally deformed neutron stars, focusing on the impact of the crust. We find that the effect on the tidal deformability is negligible, but the crust will remain largely intact up until merger.
We consider gravitationally bound states of asymmetric dark matter (ADM stars), and the impact of ADM capture on the stability of neutron stars. We derive and interpret the equation of state for ADM with both attractive and repulsive interactions, an d solve the Tolman-Oppenheimer-Volkoff equations to find equilibrium sequences and maximum masses of ADM stars. Gravitational wave searches can utilize our solutions to model exotic compact objects (ECOs). Our results for attractive interactions differ substantially from those in the literature, where fermionic ADM with attractive self-interactions was employed to destabilize neutron stars more effectively than non-interacting fermionic ADM. By contrast, we argue that fermionic ADM with an attractive force is no more effective in destabilizing neutron stars than fermionic ADM with no self-interactions.
The Neutron star Interior Composition Explorer (NICER) is currently observing the x-ray pulse profiles emitted by hot spots on the surface of rotating neutron stars allowing for an inference of their radii with unprecedented precision. A critical ing redient in the pulse profile model is an analytical formula for the oblate shape of the star. These formulas require a fitting over a large ensemble of neutron star solutions, which cover a wide set of equations of state, stellar compactnesses and rotational frequencies. However, this procedure introduces a source of systematic error, as (i) the fits do not describe perfectly the surface of all stars in the ensemble and (ii) neutron stars are described by a single equation of state, whose influence on the surface shape is averaged out during the fitting procedure. Here we perform a first study of this systematic error, finding evidence that it is subdominant relative to the statistical error in the radius inference by NICER. We also find evidence that the formula currently used by NICER can be used in the inference of the radii of rapidly rotating stars, outside of the formulas domain of validity. Moreover, we employ an accurate enthalpy-based method to locate the surface of numerical solutions of rapidly rotating neutron stars and a new highly accurate formula to describe their surfaces. These results can be used in applications that require an accurate description of oblate surfaces of rapidly rotating neutron stars.
119 - Yuri Levin 2000
R-modes in neutron stars with crusts are damped by viscous friction at the crust-core boundary. The magnitude of this damping, evaluated by Bildsten and Ushomirsky (BU) under the assumption of a perfectly rigid crust, sets the maximum spin frequency for a neutron star spun up by accretion in a Low-Mass X-ray binary (LMXB). In this paper we explore the mechanical coupling between the core r-modes and the elastic crust, using a toy model of a constant density neutron star with a constant shear modulus crust. We find that, at spin frequencies in excess of ~50 Hz, the r-modes strongly penetrate the crust. This reduces the relative motion (slippage) between the crust and the core compared to the rigid crust limit. We therefore revise down, by as much as a factor of 10^2-10^3, the damping rate computed by BU, significantly reducing the maximal possible spin frequency of neutron star with a solid crust. The dependence of the crust-core slippage on the spin frequency is complicated, and is very sensitive to the physical thickness of the crust. If the crust is sufficiently thick, the curve of the critical spin frequency for the onset of the r-mode instability becomes multi-valued for some temperatures; this is related to the avoided crossings between the r-mode and the higher-order torsional modes in the crust. The critical frequencies are comparable to the observed spins of neutron stars in LMXBs and millisecond pulsars.
The fundamental nature of dark matter is entirely unknown. A compelling candidate is Twin Higgs mirror matter, invisible hidden-sector cousins of the Standard Model particles and forces. This generically predicts mirror neutron stars, degenerate obje cts made entirely of mirror nuclear matter. We find their structure using realistic equations of state, robustly modified based on first-principle quantum chromodynamic calculations. We predict their detectability with gravitational waves and binary pulsars, suggesting an impressive discovery potential and ability to probe the dark sector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا