ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel PACS observations of shocked gas associated with the jets of L1448 and L1157

129   0   0.0 ( 0 )
 نشر من قبل Gina Santangelo Miss
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the framework of the WISH key program, several H2O (E_u>190 K), high-J CO, [OI], and OH transitions are mapped with PACS in two shock positions along the two prototypical low-luminosity outflows L1448 and L1157. Previous HIFI H2O observations (E_u=53-249 K) and complementary Spitzer mid-IR H2 data are also used, with the aim of deriving a complete picture of the excitation conditions. At all selected spots a close spatial association between H2O, mid-IR H2, and high-J CO emission is found, whereas the low-J CO emission traces either entrained ambient gas or a remnant of an older shock. The excitation analysis at L1448-B2 suggests that a two-component model is needed to reproduce the H2O, CO, and mid-IR H2 lines: an extended warm component (T~450 K) is traced by the H2O emission with E_u =53-137 K and by the CO lines up to J=22-21, and a compact hot component (T=1100 K) is traced by the H2O emission with E_u>190 K and by the higher-J CO lines. At L1448-B2 we obtain an H2O abundance (3-4)x10^{-6} for the warm component and (0.3-1.3)x10^{-5} for the hot component; we also detect OH and blue-shifted [OI] emission, spatially coincident with the other molecular lines and with [FeII] emission. This suggests a dissociative shock for these species, related to the embedded atomic jet. On the other hand, a non-dissociative shock at the point of impact of the jet on the cloud is responsible for the H2O and CO emission. The other examined shock positions show an H2O excitation similar to L1448-B2, but a slightly higher H2O abundance (a factor of 4). The two gas components may represent a gas stratification in the post-shock region. The extended and low-abundance warm component traces the post-shocked gas that has already cooled down to a few hundred Kelvin, whereas the compact and possibly higher-abundance hot component is associated with the gas that is currently undergoing a shock episode.



قيم البحث

اقرأ أيضاً

We investigate on the spatial and velocity distribution of H2O along the L1448 outflow, its relationship with other tracers, and its abundance variations, using maps of the o-H2O 1_{10}-1_{01} and 2_{12}-1_{01} transitions taken with the Herschel-HIF I and PACS instruments, respectively. Water emission appears clumpy, with individual peaks corresponding to shock spots along the outflow. The bulk of the 557 GHz line is confined to radial velocities in the range pm 10-50 km/s but extended emission associated with the L1448-C extreme high velocity (EHV) jet is also detected. The H2O 1_{10}-1_{01}/CO(3-2) ratio shows strong variations as a function of velocity that likely reflect different and changing physical conditions in the gas responsible for the emissions from the two species. In the EHV jet, a low H2O/SiO abundance ratio is inferred, that could indicate molecular formation from dust free gas directly ejected from the proto-stellar wind. We derive averaged Tkin and n(H2) values of about 300-500 K and 5 10^6 cm-3 respectively, while a water abundance with respect to H2 of the order of 0.5-1 10^{-6} along the outflow is estimated. The fairly constant conditions found all along the outflow implies that evolutionary effects on the timescales of outflow propagation do not play a major role in the H2O chemistry. The results of our analysis show that the bulk of the observed H2O lines comes from post-shocked regions where the gas, after being heated to high temperatures, has been already cooled down to a few hundred K. The relatively low derived abundances, however, call for some mechanism to diminish the H2O gas in the post-shock region. Among the possible scenarios, we favor H2O photodissociation, which requires the superposition of a low velocity non-dissociative shock with a fast dissociative shock able to produce a FUV field of sufficient strength.
In the framework of the Water in Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This pap er reports the first results of this program, presenting a PACS map of the o-H2O 179 um transition obtained toward the young outflow L1157. The 179 um map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the water abundance and total cooling. Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 um emission is spatially correlated with emission from H2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 um intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10^-4. This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total water cooling is ~10^-1 Lo, about 40% of the cooling due to H2 and 23% of the total energy released in shocks along the L1157 outflow.
L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a bipolar outflow, is an excellent source for studying shock chemistry, including grain-surface chemistry prior to shocks, and post-shock, gas-phase processing. The L1157-B1 and B2 positions experienced shocks at an estimated ~2000 and 4000 years ago, respectively. Prior to these shock events, temperatures were too low for most complex organic molecules to undergo thermal desorption. Thus, the shocks should have liberated these molecules from the ice grain-surfaces en masse, evidenced by prior observations of SiO and multiple grain mantle species commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO, all peak at different positions relative to species that are preferably formed in higher velocity shocks or repeatedly-shocked material, such as SiO and HCN. Here, we present high spatial resolution (~3) maps of CH3OH, HNCO, HCN, and HCO+ in the southern portion of the outflow containing B1 and B2, as observed with CARMA. The HNCO maps are the first interferometric observations of this species in L1157. The maps show distinct differences in the chemistry within the various shocked regions in L1157B. This is further supported through constraints of the molecular abundances using the non-LTE code RADEX (Van der Tak et al. 2007). We find the east/west chemical differentiation in C2 may be explained by the contrast of the shocks interaction with either cold, pristine material or warm, previously-shocked gas, as seen in enhanced HCN abundances. In addition, the enhancement of the HNCO abundance toward the the older shock, B2, suggests the importance of high-temperature O-chemistry in shocked regions.
M33 is a gas rich spiral galaxy of the Local Group. We investigate the relationship between the two major gas cooling lines and the total infrared (TIR) dust continuum. We mapped the emission of gas and dust in M33 using the far-infrared lines of [CI I] and [OI](63um) and the TIR. The line maps were observed with Herschel/PACS. These maps have 50pc resolution and form a ~370pc wide stripe along its major axis covering the sites of bright HII regions, but also more quiescent arm and inter-arm regions from the southern arm at 2kpc galacto-centric distance to the south out to 5.7kpc distance to the north. Full-galaxy maps of the continuum emission at 24um from Spitzer/MIPS, and at 70um, 100um, and 160um from PACS were combined to obtain a map of the TIR. TIR and [CII] intensities are correlated over more than two orders of magnitude. The range of TIR translates to a range of far ultraviolet (FUV) emission of G0,obs~2 to 200 in units of the average Galactic radiation field. The binned [CII]/TIR ratio drops with rising TIR, with large, but decreasing scatter. Fits of modified black bodies (MBBs) to the continuum emission were used to estimate dust mass surface densities and total gas column densities. A correction for possible foreground absorption by cold gas was applied to the [OI] data before comparing it with models of photon dominated regions (PDRs). Most of the ratios of [CII]/[OI] and ([CII]+[OI])/TIR are consistent with two model solutions. The median ratios are consistent with one solution at n~2x10^2 cm-3, G0~60, and and a second low-FUV solution at n~10^4 cm-3, G0~1.5. The bulk of the gas along the lines-of-sight is represented by a low-density, high-FUV phase with low beam filling factors ~1. A fraction of the gas may, however, be represented by the second solution.
Outflows generated by protostars heavily affect the kinematics and chemistry of the hosting molecular cloud through strong shocks that enhance the abundance of some molecules. L1157 is the prototype of chemically active outflows, and a strong shock, called B1, is taking place in its blue lobe between the precessing jet and the hosting cloud. We present the Herschel-PACS 55--210 micron spectra of the L1157-B1 shock, showing emission lines from CO, H2O, OH, and [OI]. The spatial resolution of the PACS spectrometer allows us to map the warm gas traced by far-infrared (FIR) lines with unprecedented detail. The rotational diagram of the high-Jup CO lines indicates high-excitation conditions (Tex ~ 210 +/- 10 K). We used a radiative transfer code to model the hot CO gas emission observed with PACS and in the CO (13-12) and (10-9) lines measured by Herschel-HIFI. We derive 200<Tkin<800 K and n>10^5 cm-3. The CO emission comes from a region of about 7 arcsec located at the rear of the bow shock where the [OI] and OH emission also originate. Comparison with shock models shows that the bright [OI] and OH emissions trace a dissociative J-type shock, which is also supported by a previous detection of [FeII] at the same position. The inferred mass-flux is consistent with the reverse shock where the jet is impacting on the L1157-B1 bow shock. The same shock may contribute significantly to the high-Jup CO emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا