ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulse shape discrimination for GERDA Phase I data

163   0   0.0 ( 0 )
 نشر من قبل Peter Grabmayr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The GERDA experiment located at the LNGS searches for neutrinoless double beta (0 ubetabeta) decay of ^{76}Ge using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched ^{76}Ge fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV gamma rays from ^{208}Tl decays as well as 2 ubetabeta decays of ^{76}Ge are used as proxies for 0 ubetabeta decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92$pm$0.02 of signal-like events while about 80% of the background events at Q_{betabeta}=2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0 ubetabeta decay. It retains 90% of DEP events and rejects about half of the events around Q_{betabeta}. The 2 ubetabeta events have an efficiency of 0.85pm0.02 and the one for 0 ubetabeta decays is estimated to be 0.90^{+0.05}_{-0.09}. A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90% of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2 ubetabeta decays.



قيم البحث

اقرأ أيضاً

In this study, we evaluate and compare the pulse shape discrimination (PSD) performance of multipixel photon counters (MPPCs, also known as silicon photomultiphers - SiPMs) with that of a typical photomultiplier tube (PMT) when testing using CsI(Tl) scintillators. We use the charge comparison method, whereby we discriminate different types of particles by the ratio of charges integrated within two time-gates (the delayed part and the entire digitized waveform). For a satisfactory PSD performance, a setup should generate many photoelectrons (p.e.) and collect their charges efficiently. The PMT setup generates more p.e. than the MPPC setup does. With the same digitizer and the same long time-gate (the entire digitized waveform), the PMT setup is also better in charge collection. Therefore, the PMT setup demonstrates better PSD performance. We subsequently test the MPPC setup using a new data acquisition (DAQ) system. Using this new DAQ, the long time-gate is extended by nearly four times the length when using the previous digitizer. With this longer time-gate, we collect more p.e. at the tail part of the pulse and almost all the charges of the total collected p.e. Thus, the PSD performance of the MPPC setup is improved significantly. This study also provides an estimation of the short time-gate (the delayed part of the digitized waveform) that can give a satisfactory PSD performance without an extensive analysis to optimize this gate.
A comparative study of the neutron-$gamma$ Pulse Shape Discrimination (PSD) with seven organic scintillators is performed using an identical setup and digital electronics. The scintillators include plastics (EJ-299-33 and a plastic prototype), single crystals (stilbene and the recent doped $p$-terphenyl) and liquids (BC501A, NE213 and the deuterated liquid BC537). First, the overall PSD performance of the different scintillators is compared and threshold neutron energies for a given discrimination quality are determined. Then, using statistical arguments, two intrinsic contributions to the PSD capability of the scintillating materials are disentangled: the light yield and the specific pulse shapes induced by neutrons and $gamma$-rays. This separation provides additional insight into the behaviour of organic scintillators and allows a detailed comparison of the discrimination performance of the various materials. On the basis of this analysis, limitations of current organic scintillators and of recently proposed alternative scintillators are discussed.
We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future $^{76}$Ge neutrinoless double beta ($0 ubetabeta$) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge detectors (BEGe) that are currently used in the GERDA $0 ubetabeta$ decay experiment. This will result in lower background for the search of $0 ubetabeta$ decay due to a reduction of cables, electronics and holders. The measured resolution near the $^{76}$Ge Q-value at 2039 keV is 2.5 keV and their pulse-shape characteristics are similar to BEGe-detectors. It is concluded that this type of Ge-detector is suitable for usage in $^{76}$Ge $0 ubetabeta$ decay experiments.
150 - S. Oguri , Y. Inoue , M. Minowa 2010
We measured the decay time of the scintillation pulses produced by electron and nuclear recoils in CaF2(Eu) by a new fitting method. In the recoil energy region 5-30 keVee, we found differences of the decay time between electron and nuclear recoil ev ents. In the recoil energy region above 20 keVee, we found that the decay time is independent of the recoil energy.
119 - F. C. E. Teh , J. -W. Lee , K. Zhu 2020
Using the waveforms from a digital electronic system, an offline analysis technique on pulse shape discrimination (PSD) has been developed to improve the neutron-gamma separation in a bar-shaped NE-213 scintillator that couples to a photomultiplier t ube (PMT) at each end. The new improved method, called the ``valued-assigned PSD (VPSD), assigns a normalized fitting residual to every waveform as the PSD value. This procedure then facilitates the incorporation of longitudinal position dependence of the scintillator, which further enhances the PSD capability of the detector system. In this paper, we use radiation emitted from an AmBe neutron source to demonstrate that the resulting neutron-gamma identification has been much improved when compared to the traditional technique that uses the geometric mean of light outputs from both PMTs. The new method has also been modified and applied to a recent experiment at the National Superconducting Cyclotron Laboratory (NSCL) that uses an analog electronic system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا