ﻻ يوجد ملخص باللغة العربية
Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.
We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological inform
Using the chiral representation for spinors we present a particularly transparent way to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst action. In such theories torsion need not vanish, but i
Recently there have been suggestions that the Type Ia supernova data can be explained using only general relativity and cold dark matter with no dark energy. In Swiss cheese models of the Universe, the standard Friedmann-Robertson-Walker picture is m
Cluster weak lensing is a sensitive probe of cosmology, particularly the amplitude of matter clustering $sigma_8$ and matter density parameter $Omega_m$. The main nuisance parameter in a cluster weak lensing cosmological analysis is the scatter betwe
We consider the dynamics of a cosmological substratum of pressureless matter and holographic dark energy with a cutoff length proportional to the Ricci scale. Stability requirements for the matter perturbations are shown to single out a model with a