ترغب بنشر مسار تعليمي؟ اضغط هنا

New near-infrared observations and lens-model constraints for UM673

392   0   0.0 ( 0 )
 نشر من قبل Ekaterina Koptelova
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: We performed a detailed photometric analysis of the lensed system UM673 (Q0142-100) and an analysis of the tentative lens models. Methods: High-resolution adaptive optics images of UM673 taken with the Subaru telescope in the H band were examined. We also analysed the J, H and K-band observational data of UM673 obtained with the 1.3m telescope at the CTIO observatory. Results: We present photometry of quasar components A and B of UM673, the lens, and the nearby bright galaxy using H-band observational data obtained with the Subaru telescope. Based on the CTIO observations of UM673, we also present J- and H-band photometry and estimates of the J, H and K-band flux ratios between the two UM673 components in recent epochs. The near-infrared fluxes of the A and B components of UM673 and their published optical fluxes are analysed to measure extinction properties of the lensing galaxy. We estimate the extinction-corrected flux ratio between components A and B to be about 2.14 mag. We discuss lens models for the UM673 system constrained with the positions of the UM673 components, their flux ratio, and the previously measured time delay

قيم البحث

اقرأ أيضاً

We main goal of this paper is to test whether the NIR peak magnitudes of SNe Ia could be accurately estimated with only a single observation obtained close to maximum light, provided the time of B band maximum and the optical stretch parameter are kn own. We obtained multi-epoch UBVRI and single-epoch J and H photometric observations of 16 SNe Ia in the redshift range z=0.037-0.183, doubling the leverage of the current SN Ia NIR Hubble diagram and the number of SNe beyond redshift 0.04. This sample was analyzed together with 102 NIR and 458 optical light curves (LCs) of normal SNe Ia from the literature. The analysis of 45 well-sampled NIR LCs shows that a single template accurately describes them if its time axis is stretched with the optical stretch parameter. This allows us to estimate the NIR peak magnitudes even with one observation obtained within 10 days from B-band maximum. We find that the NIR Hubble residuals show weak correlation with DM_15 and E(B-V), and for the first time we report a possible dependence on the J_max-H_max color. The intrinsic NIR luminosity scatter of SNe Ia is estimated to be around 0.10 mag, which is smaller than what can be derived for a similarly heterogeneous sample at optical wavelengths. In conclusion, we find that SNe Ia are at least as good standard candles in the NIR as in the optical. We showed that it is feasible to extended the NIR SN Ia Hubble diagram to z=0.2 with very modest sampling of the NIR LCs, if complemented by well-sampled optical LCs. Our results suggest that the most efficient way to extend the NIR Hubble diagram to high redshift would be to obtain a single observation close to the NIR maximum. (abridged)
In this paper we describe the first data release of the UltraVISTA near-infrared imaging survey of the COSMOS field. We summarise the key goals and design of the survey and provide a detailed description of our data reduction techniques . We provide stacked, sky-subtracted images in $YJHK_{rm s}$ and narrow-band filters constructed from data collected during the first year of UltraVISTA observations. Our stacked images reach $5sigma$ $AB$ depths in an aperture of $2arcsec$ diameter of $sim 25$ in $Y$ and $sim 24$ in $JHK_{rm s}$ bands and all have sub-arcsecond seeing. To this $5sigma$ limit, our $K_{rm s}$ catalogue contains 216,268 sources. We carry out a series of quality assessment tests on our images and catalogues, comparing our stacks with existing catalogues. The $1sigma$ astrometric RMS in both directions for stars selected with $17.0<K_{rm s}rm {(AB)} <19.5$ is $sim 0.08arcsec$ in comparison to the publicly-available COSMOS ACS catalogues. Our images are resampled to the same pixel scale and tangent point as the publicly available COSMOS data and so may be easily used to generate multi-colour catalogues using this data. All images and catalogues presented in this paper are publicly available through ESOs phase 3 archiving and distribution system and from the UltraVISTA web site.
109 - Eric S. Perlman 2014
One aspect of the quantum nature of spacetime is its foaminess at very small scales. Many models for spacetime foam are defined by the accumulation power $alpha$, which parameterizes the rate at which Planck-scale spatial uncertainties (and thephase shifts they produce) may accumulate over large path-lengths. Here $alpha$ is defined by theexpression for the path-length fluctuations, $delta ell$, of a source at distance $ell$, wherein $delta ell simeq ell^{1 - alpha} ell_P^{alpha}$, with $ell_P$ being the Planck length. We reassess previous proposals to use astronomical observations ofdistant quasars and AGN to test models of spacetime foam. We show explicitly how wavefront distortions on small scales cause the image intensity to decay to the point where distant objects become undetectable when the path-length fluctuations become comparable to the wavelength of the radiation. We use X-ray observations from {em Chandra} to set the constraint $alpha gtrsim 0.58$, which rules out the random walk model (with $alpha = 1/2$). Much firmer constraints canbe set utilizing detections of quasars at GeV energies with {em Fermi}, and at TeV energies with ground-based Cherenkovtelescopes: $alpha gtrsim 0.67$ and $alpha gtrsim 0.72$, respectively. These limits on $alpha$ seem to rule out $alpha = 2/3$, the model of some physical interest.
The observational study of star formation relations in galaxies is central to unraveling the physical processes at work on local and global scales. We wish to expand the sample of extreme starbursts, represented by local LIRGs and ULIRGs, with high q uality observations in the 1-0 line of HCN. We study if a universal law can account for the star formation relations observed for the dense molecular gas in normal star forming galaxies and extreme starbursts. We have used the IRAM 30m telescope to observe a sample of 19 LIRGs in the 1-0 lines of CO, HCN and HCO+. The analysis of the new data proves that the efficiency of star formation in the dense molecular gas (SFE-dense) of extreme starbursts is a factor 3-4 higher compared to normal galaxies. We find a duality in Kennicutt-Schmidt (KS) laws that is reinforced if we account for the different conversion factor for HCN (alpha-HCN) in extreme starbursts and for the unobscured star formation rate in normal galaxies. This result extends to the higher molecular densities probed by HCN lines the more extreme bimodal behavior of star formation laws, derived from CO molecular lines by two recent surveys. We have confronted our observations with the predictions of theoretical models in which the efficiency of star formation is determined by the ratio of a constant star formation rate per free-fall time (SFR-ff) to the local free-fall time. We find that it is possible to fit the observed differences in the SFE-dense between normal galaxies and LIRGs/ULIRGs using a common constant SFR-ff and a set of physically acceptable HCN densities, but only if SFR-ff~0.005-0.01 and/or if alpha-HCN is a factor of a few lower than our favored values. Star formation recipes that explicitly depend on the galaxy global dynamical time scales do not significantly improve the fit to the new HCN data presented in this work.
98 - D. Ricci , A. Elyiv , F. Finet 2013
With the aim of characterizing the flux and color variations of the multiple components of the gravitationally lensed quasar UM673 as a function of time, we have performed multi-epoch and multi-band photometric observations with the Danish 1.54m tele scope at the La Silla Observatory. The observations were carried out in the VRi spectral bands during four seasons (2008--2011). We reduced the data using the PSF (Point Spread Function) photometric technique as well as aperture photometry. Our results show for the brightest lensed component some significant decrease in flux between the first two seasons (+0.09/+0.11/+0.05 mag) and a subsequent increase during the following ones (-0.11/-0.11/-0.10 mag) in the V/R/i spectral bands, respectively. Comparing our results with previous studies, we find smaller color variations between these seasons as compared with previous ones. We also separate the contribution of the lensing galaxy from that of the fainter and close lensed component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا