ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for l-C3H+ and l-C3H in Sgr B2(N), Sgr B2(OH), and the Dark Cloud TMC-1

118   0   0.0 ( 0 )
 نشر من قبل Brett McGuire
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pety et al. (2012) recently reported the detection of several transitions of an unknown carrier in the Horsehead PDR and attribute them to l-C3H+. Here, we have tested the predictive power of their fit by searching for, and identifying, the previously unobserved J=1-0 and J=2-1 transitions of the unknown carrier (B11244) towards Sgr B2(N) in data from the publicly available PRIMOS project. Also presented here are observations of the J=6-5 and J=7-6 transitions towards Sgr B2(N) and Sgr B2(OH) using the Barry E. Turner Legacy Survey and results from the Kaifu et al. (2004) survey of TMC-1. We calculate an excitation temperature and column density of B11244 of ~10 K and ~10^13 cm-2 in Sgr B2(N) and ~79 K with an upper limit of < 1.5 x 10^13 cm-2 in Sgr B2(OH) and find trace evidence for the cations presence in TMC-1. Finally, we present spectra of the neutral species in both Sgr B2(N) and TMC-1, and comment on the robustness of the assignment of the detected signals to l-C3H+.

قيم البحث

اقرأ أيضاً

For all the amides detected in the interstellar medium (ISM), the corresponding nitriles or isonitriles have also been detected in the ISM, some of which have relatively high abundances. Among the abundant nitriles for which the corresponding amide h as not yet been detected is cyanoacetylene (HCCCN), whose amide counterpart is propiolamide (HCCC(O)NH$_2$). With the aim of supporting searches for this amide in the ISM, we provide a complete rotational study of propiolamide from 6 GHz to 440 GHz using rotational spectroscopic techniques in the frequency and time domain. We identified and measured more than 5500 distinct frequency lines of propiolamide and obtained accurate sets of spectroscopic parameters for the ground state and the three low-lying excited vibrational states. We used the ReMoCA spectral line survey performed with the Atacama Large Millimeter/submillimeter Array toward the star-forming region Sgr B2(N) to search for propiolamide. We report the nondetection of propiolamide toward the hot cores Sgr B2(N1S) and Sgr B2(N2). We find that propiolamide is at least 50 and 13 times less abundant than acetamide in Sgr B2(N1S) and Sgr B2(N2), respectively, indicating that the abundance difference between both amides is more pronounced by at least a factor of 8 and 2, respectively, than for their corresponding nitriles. Although propiolamide has yet to be included in astrochemical modeling networks, the observed upper limit to the ratio of propiolamide to acetamide seems consistent with the ratios of related species as determined from past simulations.
Glycolamide is a glycine isomer and also one of the simplest derivatives of acetamide (e.g., one hydrogen atom is replaced with a hydroxyl group), which is a known interstellar molecule. Using a battery of state of the art rotational spectroscopic te chniques in the frequency and time domain, around 1500 transitions have been newly assigned. Based on the reliable frequency predictions, we report a radioastronomical search for glycolamide in the well known high-mass star forming region Sgr B2(N) using the ALMA imaging spectral line survey ReMoCA. We also searched for glycolamide toward Sgr B2(N) with the Effelsberg radio telescope. We report the nondetection of glycolamide toward this source with an abundance at least six and five times lower than that of acetamide and glycolaldehyde, respectively. Our astrochemical model suggests that glycolamide may be present in this source at a level just below the upper limit, which was derived from the EMoCA survey. We could also not detect the molecule in the regions extended molecular envelope, which was probed with the Effelsberg telescope. We find an upper limit to its column density that is similar to the column densities obtained earlier for acetamide and glycolaldehyde with the Green Bank Telescope.
Thioformamide NH2CHS is a sulfur-bearing analog of formamide NH2CHO. The latter was detected in the interstellar medium back in the 1970s. Most of the sulfur-containing molecules detected in the interstellar medium are analogs of corresponding oxygen -containing compounds. Therefore, thioformamide is an interesting candidate for a search in the interstellar medium. The rotational spectrum of thioformamide was measured and analyzed in the frequency range 150 to 660 GHz using the Lille spectrometer. We searched for thioformamide toward the high-mass star-forming region Sagittarius (Sgr) B2(N) using the ReMoCA spectral line survey carried out with the Atacama Large Millimeter/submillimeter Array (ALMA). Accurate rotational constants were obtained from the analysis of the ground state of parent, 34S, 13C, and 15N singly substituted isotopic species of thioformamide. For the parent isotopolog, the lowest two excited vibrational states, v12 = 1 and v9 = 1, were analyzed using a model that takes Coriolis coupling into account. Thioformamide was not detected toward the hot cores Sgr B2(N1S) and Sgr B2(N2). The sensitive upper limits indicate that thioformamide is nearly three orders of magnitude at least less abundant than formamide. This is markedly different from methanethiol, which is only about two orders of magnitude less abundant than methanol in both sources. The different behavior shown by methanethiol versus thioformamide may be caused by the preferential formation of the latter (on grains) at late times and low temperatures, when CS abundances are depressed. This reduces the thioformamide-to-formamide ratio, because the HCS radical is not as readily available under these conditions.
We report ALMA observations with resolution $approx0.5$ at 3 mm of the extended Sgr B2 cloud in the Central Molecular Zone (CMZ). We detect 271 compact sources, most of which are smaller than 5000 AU. By ruling out alternative possibilities, we concl ude that these sources consist of a mix of hypercompact HII regions and young stellar objects (YSOs). Most of the newly-detected sources are YSOs with gas envelopes which, based on their luminosities, must contain objects with stellar masses $M_*gtrsim8$ M$_odot$. Their spatial distribution spread over a $sim12times3$ pc region demonstrates that Sgr B2 is experiencing an extended star formation event, not just an isolated `starburst within the protocluster regions. Using this new sample, we examine star formation thresholds and surface density relations in Sgr B2. While all of the YSOs reside in regions of high column density ($N(H_2)gtrsim2times10^{23}$ cm$^{-2}$), not all regions of high column density contain YSOs. The observed column density threshold for star formation is substantially higher than that in solar vicinity clouds, implying either that high-mass star formation requires a higher column density or that any star formation threshold in the CMZ must be higher than in nearby clouds. The relation between the surface density of gas and stars is incompatible with extrapolations from local clouds, and instead stellar densities in Sgr B2 follow a linear $Sigma_*-Sigma_{gas}$ relation, shallower than that observed in local clouds. Together, these points suggest that a higher volume density threshold is required to explain star formation in CMZ clouds.
Observations of H$_{2}$CO lines and continuum at 1.3 mm towards Sgr B2(N) and Sgr B2(M) cores were carried out with the SMA. We imaged H$_{2}$CO line absorption against the continuum cores and the surrounding line emission clumps. The results show th at the majority of the dense gas is falling into the major cores where massive stars have been formed. The filaments and clumps of the continuum and gas are detected outside of Sgr B2(N) and Sgr B2(M) cores. Both the spectra and moment analysis show the presence of outflows from Sgr B2(M) cores. The H$_{2}$CO gas in the red-shifted outflow of Sgr B2(M) appears to be excited by a non-LTE process which might be related to the shocks in the outflow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا