ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effect of Composition on the Evolution of Giant and Intermediate-Mass Planets

122   0   0.0 ( 0 )
 نشر من قبل Allona Vazan
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We model the evolution of planets with various masses and compositions. We investigate the effects of the composition and its depth dependence on the long-term evolution of the planets. The effects of opacity and stellar irradiation are also considered. It is shown that the change in radius due to various compositions can be significantly smaller than the change in radius caused by the opacity. Irradiation also affects the planetary contraction but is found to be less important than the opacity effects. We suggest that the mass-radius relationship used for characterization of observed extrasolar planets should be taken with great caution since different physical conditions can result in very different mass-radius relationships.



قيم البحث

اقرأ أيضاً

Calculations from stellar evolutionary models of low- and intermediate-mass asymptotic giant branch (AGB) stars provide predictions of elemental abundances and yields for comparison to observations. However, there are many uncertainties that reduce t he accuracy of these predictions. One such uncertainty involves the treatment of low-temperature molecular opacities that account for the surface abundance variations of C, N, and O. A number of prior calculations of intermediate-mass AGB stellar models that incorporate both efficient third dredge-up and hot bottom burning include a molecular opacity treatment which does not consider the depletion of C and O due to hot bottom burning. Here we update the molecular opacity treatment and investigate the effect of this improvement on calculations of intermediate-mass AGB stellar models. We perform tests on two masses, 5 M$_{odot}$ and 6 M$_{odot}$, and two metallicities, $Z~=~0.001$ and $Z~=~0.02$, to quantify the variations between two opacity treatments. We find that several evolutionary properties (e.g. radius, $T_{rm eff}$ and $T_{rm bce}$) are dependent on the opacity treatment. Larger structural differences occur for the $Z~=~0.001$ models compared to the $Z~=~0.02$ models indicating that the opacity treatment has a more significant effect at lower metallicity. As a consequence of the structural changes, the predictions of isotopic yields are slightly affected with most isotopes experiencing changes up to 60 per cent for the $Z~=~0.001$ models and 20 per cent for the $Z~=~0.02$ models. Despite this moderate effect, we conclude that it is more fitting to use variable molecular opacities for models undergoing hot bottom burning.
Kepler-93b is a 1.478 +/- 0.019 Earth radius planet with a 4.7 day period around a bright (V=10.2), astroseismically-characterized host star with a mass of 0.911+/-0.033 solar masses and a radius of 0.919+/-0.011 solar radii. Based on 86 radial veloc ity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02+/-0.68 Earth masses. The corresponding high density of 6.88+/-1.18 g/cc is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1-6 Earth masses, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses > 6 Earth masses: All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 Earth mass planets.
59 - I. Baraffe 2004
We include the effect of evaporation in our evolutionary calculations of close-in giant planets, based on a recent model for thermal evaporation taking into account the XUV flux of the parent star (Lammer et al. 2003). Our analysis leads to the exist ence of a critical mass for a given orbital distance $m_{rm crit}(a)$ below which the evaporation timescale becomes shorter than the thermal timescale of the planet. For planets with initial masses below $m_{rm crit}$, evaporation leads to a rapid expansion of the outer layers and of the total planetary radius, speeding up the evaporation process. Consequently, the planet does not survive as long as estimated by a simple application of mass loss rates without following consistently its evolution. We find out that the transit planet HD 209458b might be in such a dramatic phase, although with an extremely small probability. As a consequence, we predict that, after a certain time, only planets above a value $m_{rm crit}(a)$ should be present at an orbital distance $a$ of a star. For planets with initial masses above $m_{rm crit}$, evaporation does not affect the evolution of the radius with time.
Priorities in exo-planet research are rapidly moving from finding planets to characterizing their physical properties. Of key importance is their chemical composition, which feeds back into our understanding of planet formation. For the foreseeable f uture, far-ultraviolet spectroscopy of white dwarfs accreting planetary debris remains the only way to directly and accurately measure the bulk abundances of exo-planetary bodies. The exploitation of this method is limited by the sensitivity of HST, and significant progress will require a large-aperture space telescope with a high-throughput ultraviolet spectrograph.
We present the mass-density relationship (log M - log rho) for objects with masses ranging from planets (M ~ 0.01 M_Jup) through stars (M > 0.08 M_Sun). This relationship shows three distinct regions separated by a change in slope in log M -- log rho plane. In particular, objects with masses in the range 0.3 M_Jup to 60 M_Jup follow a tight linear relationship with no distinguishing feature to separate the low mass end (giant planets) from the high mass end (brown dwarfs). The distinction between giant planets and brown dwarfs thus seems arbitrary. We propose a new definition of giant planets based simply on changes in the slope of the log $M$ versus log rho relationship. By this criterion, objects with masses less than ~ 0.3 M_Jup are low mass planets, either icy or rocky. Giant planets cover the mass range 0.3 M_Jup to 60 M_Jup. Analogous to the stellar main sequence, objects on the upper end of the giant planet sequence (brown dwarfs) can simply be referred to as high mass giant planets, while planets with masses near that of Jupiter can be considered to be low mass giant planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا