ترغب بنشر مسار تعليمي؟ اضغط هنا

An inelastic x-ray study of phonon broadening and charge density wave formation in ortho-II ordered YBa2Cu3O6.54

63   0   0.0 ( 0 )
 نشر من قبل Stephen Hayden
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inelastic x-ray scattering is used to investigate charge density wave (CDW) formation and the low-energy lattice dynamics of the underdoped high temperature superconductor ortho-II YBa2Cu3O6.54. We find that, for a temperature ~1/3 of the CDW onset temperature (~155 K), the CDW order is static within the resolution of the experiment, that is the inverse lifetime is less than 0.3 meV. In the same temperature region, low-energy phonons near the ordering wavevector of the CDW show large increases in their linewidths. This contrasts with the usual behavior in CDW systems where the phonon anomalies are strongest near the CDW onset temperature


قيم البحث

اقرأ أيضاً

X-ray diffraction measurements show that the high-temperature superconductor YBa$_2$Cu$_3$O$_{6.54}$, with ortho-II oxygen order, has charge density wave order (CDW) in the absence of an applied magnetic field. The dominant wavevector of the CDW is $ mathbf{q}_{mathrm{CDW}} = (0, 0.328(2), 0.5)$, with the in-plane component parallel to the $mathbf{b}$-axis (chain direction). It has a similar incommensurability to that observed in ortho-VIII and ortho-III samples, which have different dopings and oxygen orderings. Our results for ortho-II contrast with recent high-field NMR measurements, which suggest a commensurate wavevector along the $mathbf{a}$-axis. We discuss the relationship between spin and charge correlations in YBa$_2$Cu$_3$O$_{y}$, and recent high-field quantum oscillation, NMR and ultrasound experiments.
Charge density wave (CDW) correlations are prevalent in all copper-oxide superconductors. While CDWs in conventional metals are driven by coupling between lattice vibrations and electrons, the role of the electron-phonon coupling (EPC) in cuprate CDW s is strongly debated. Using Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS), we study the CDW and Cu-O bond-stretching phonons in the stripe-ordered cuprate La$_{1.8-x}$Eu$_{0.2}$Sr$_{x}$CuO$_{4+delta}$. We investigate the interplay between charge order and EPC as a function of doping and temperature, and find that the EPC is enhanced in a narrow momentum region around the CDW wave vector. By detuning the incident photon energy from the absorption resonance, we extract an EPC matrix element at the CDW wave vector of $Msimeq$ 0.36 eV, which decreases to $Msimeq$ 0.30 eV at high temperature in the absence of the CDW. Our results suggest a feedback mechanism in which the CDW enhances the EPC which, in turn, further stabilizes the CDW.
We report the results a comprehensive study of charge density wave (CDW) correlations in untwinned YBCO6+x single crystals with 0.4<x<0.99 using Cu-L3 edge resonant x-ray scattering (RXS). Evidence of CDW formation is found for 0.45<x<0.93, but not f or samples with x<0.44 that exhibit incommensurate spin-density-wave order, and in slightly overdoped samples with x=0.99. This suggests the presence of two proximate zero-temperature CDW critical points at doping pc1~0.08 and pc2~0.18. The CDW reflections are observed at incommensurate in-plane wave vectors (d_a, 0) and (0, d_b). Both decrease linearly with increasing doping, in agreement with recent reports on Bi-based high-Tc superconductors, but in sharp contrast to the behavior of the 214 family. The CDW intensity and correlation length exhibit maxima at p~0.12, coincident with a plateau in the superconducting transition temperature Tc. The onset temperature of the CDW reflections depends non-monotonically on p, with a maximum of~160 K for p~0.12. The RXS reflections exhibit a uniaxial intensity anisotropy. We further observe a depression of CDW correlations upon cooling below Tc, and (for samples with p> 0.09) an enhancement of the signal when an external magnetic field up to 6 T is applied in the superconducting state. For samples with p~0.08, where prior work has revealed a field-enhancement of incommensurate magnetic order, the RXS signal is field-independent. This supports a previously suggested scenario in which incommensurate charge and spin orders compete against each other, in addition to individually competing against. We discuss the relationship of these results to stripe order 214, the pseudogap phenomenon, superconducting fluctuations, and quantum oscillations.
131 - W. Tabis , B. Yu , I. Bialo 2017
We present a detailed synchrotron x-ray scattering study of the charge-density-wave (CDW) order in simple tetragonal HgBa$_2$CuO$_{4+delta}$ (Hg1201). Resonant soft x-ray scattering measurements reveal that short-range order appears at a temperature that is distinctly lower than the pseudogap temperature and in excellent agreement with a prior transient reflectivity result. Despite considerable structural differences between Hg1201 and YBa$_2$Cu$_3$O$_{6+delta}$, the CDW correlations exhibit similar doping dependencies, and we demonstrate a universal relationship between the CDW wave vector and the size of the reconstructed Fermi pocket observed in quantum oscillation experiments. The CDW correlations in Hg1201 vanish already below optimal doping, once the correlation length is comparable to the CDW modulation period, and they appear to be limited by the disorder potential from unit cells hosting two interstitial oxygen atoms. A complementary hard x-ray diffraction measurement, performed on an underdoped Hg1201 sample in magnetic fields along the crystallographic $c$ axis of up to 16 T, provides information about the form factor of the CDW order. As expected from the single-CuO$_2$-layer structure of Hg1201, the CDW correlations vanish at half-integer values of $L$ and appear to be peaked at integer $L$. We conclude that the atomic displacements associated with the short-range CDW order are mainly planar, within the CuO$_2$ layers.
We report a detailed Raman scattering study of the lattice dynamics in detwinned single crystals of the underdoped high temperature superconductor YBa2Cu3O6+x (x=0.75, 0.6, 0.55 and 0.45). Whereas at room temperature the phonon spectra of these compo unds are similar to that of optimally doped YBa2Cu3O6.99, additional Raman-active modes appear upon cooling below ~170-200 K in underdoped crystals. The temperature dependence of these new features indicates that they are associated with the incommensurate charge density wave state recently discovered using synchrotron x-ray scattering techniques on the same single crystals. Raman scattering has thus the potential to explore the evolution of this state under extreme conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا