ترغب بنشر مسار تعليمي؟ اضغط هنا

A survey of H$_2$O, CO$_2$ and CO ice features towards background stars and low mass YSOs using AKARI

274   0   0.0 ( 0 )
 نشر من قبل Jennifer Noble
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present near infrared spectroscopic observations of 19 molecular clouds made using the AKARI satellite, and the data reduction pipeline written to analyse those observations. The 2.5 --~5 $mu$m spectra of 30 objects -- 22 field stars behind quiescent molecular clouds and eight low mass YSOs in cores -- were successfully extracted using the pipeline. Those spectra are further analysed to calculate the column densities of key solid phase molecular species, including H$_2$O, CO$_2$, CO, and OCN$^-$. The profile of the H$_2$O ice band is seen to vary across the objects observed and we suggest that the extended red wing may be an evolutionary indicator of both dust and ice mantle properties. The observation of 22 spectra with fluxes as low as $<$~5 mJy towards background stars, including 15 where the column densities of H$_2$O, CO and CO$_2$ were calculated, provides valuable data that could help to benchmark the initial conditions in star-forming regions prior to the onset of star formation.

قيم البحث

اقرأ أيضاً

Intermediate-mass young stellar objects (YSOs) provide a link to understand how feedback from shocks and UV radiation scales from low to high-mass star forming regions. Aims: Our aim is to analyze excitation of CO and H$_2$O in deeply-embedded interm ediate-mass YSOs and compare with low-mass and high-mass YSOs. Methods: Herschel/PACS spectral maps are analyzed for 6 YSOs with bolometric luminosities of $L_mathrm{bol}sim10^2 - 10^3$ $L_odot$. The maps cover spatial scales of $sim 10^4$ AU in several CO and H$_2$O lines located in the $sim55-210$ $mu$m range. Results: Rotational diagrams of CO show two temperature components at $T_mathrm{rot}sim320$ K and $T_mathrm{rot}sim700-800$ K, comparable to low- and high-mass protostars probed at similar spatial scales. The diagrams for H$_2$O show a single component at $T_mathrm{rot}sim130$ K, as seen in low-mass protostars, and about $100$ K lower than in high-mass protostars. Since the uncertainties in $T_mathrm{rot}$ are of the same order as the difference between the intermediate and high-mass protostars, we cannot conclude whether the change in rotational temperature occurs at a specific luminosity, or whether the change is more gradual from low- to high-mass YSOs. Conclusions: Molecular excitation in intermediate-mass protostars is comparable to the central $10^{3}$ AU of low-mass protostars and consistent within the uncertainties with the high-mass protostars probed at $3cdot10^{3}$ AU scales, suggesting similar shock conditions in all those sources.
The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical reservoirs that subsequently evolve via geological cycles. Current theoretical techniques are limited in exploring the anticipated range of compositional and thermal scenarios of early planetary evolution, even though these are of prime importance to aid astronomical inferences on the environmental context and geological history of extrasolar planets. Here, we present a coupled numerical framework that links an evolutionary, vertically-resolved model of the planetary silicate mantle with a radiative-convective model of the atmosphere. Using this method we investigate the early evolution of idealized Earth-sized rocky planets with end-member, clear-sky atmospheres dominated by either H$_2$, H$_2$O, CO$_2$, CH$_4$, CO, O$_2$, or N$_2$. We find central metrics of early planetary evolution, such as energy gradient, sequence of mantle solidification, surface pressure, or vertical stratification of the atmosphere, to be intimately controlled by the dominant volatile and outgassing history of the planet. Thermal sequences fall into three general classes with increasing cooling timescale: CO, N$_2$, and O$_2$ with minimal effect, H$_2$O, CO$_2$, and CH$_4$ with intermediate influence, and H$_2$ with several orders of magnitude increase in solidification time and atmosphere vertical stratification. Our numerical experiments exemplify the capabilities of the presented modeling framework and link the interior and atmospheric evolution of rocky exoplanets with multi-wavelength astronomical observations.
We present the results from a survey, designed to investigate the accretion process of massive young stellar objects (MYSOs) through near infrared narrow band imaging using the H$_2$ $ u$=1-0 S(1) transition filter. A sample of 353 Massive Young Stel lar Object (MYSO) candidates was selected from the Red MSX Source survey using photometric criteria at longer wavelengths (infrared and submillimeter) and chosen with positions throughout the Galactic Plane. Our survey was carried out at the SOAR Telescope in Chile and CFHT in Hawaii covering both hemispheres. The data reveal that extended H$_2$ emission is a good tracer of outflow activity, which is a signpost of accretion process on young massive stars. Almost half of the sample exhibit extended H$_2$ emission and 74 sources (21%) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to appear on radio-quiet sources, indicating these structures occur during the pre-UCHII phase. We also found an important fraction of sources associated with fluorescent H$_2$ diffuse emission that could be due to a more evolved phase. The images also indicate only $sim$23% (80) of the sample is associated with extant (young) stellar clusters. These results support the scenario in which massive stars are formed by accretion disks, since the merging of low mass stars would not produce outflow structures.
55 - Y. Aikawa , D. Kamuro , I. Sakon 2011
To investigate the composition and evolution of circumstellar ice around low-mass YSOs, we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on dis ks. We performed slit-less spectroscopic observations using the grism mode of the Infrared Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 $mu$m to 5 $mu$m. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS04302), absorption bands of H$_2$O, CO$_2$, CO, and XCN are clearly detected. Column density ratios of CO$_2$ ice and CO ice relative to H$_2$O ice are 21-28% and 13-46%, respectively. If XCN is OCN$^-$, its column density is as high as 2-6% relative to H$_2$O ice. The HDO ice feature at 4.1 $mu$m is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 $mu$m provide upper limits to the CH$_3$OH abundance of 26% (L1527) and 42% (IRAS04302) relative to H$_2$O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN$^-$ could originate in the region close to the protostar, where there are warm temperatures and UV radiation. We detect H$_2$O ice band towards ASR41 and 2MASSJ1628137-243139, which are edge-on class II disks. We also detect H$_2$O ice and CO$_2$ ice towards HV Tau, HK Tau, and UY Aur, and tentatively detect CO gas features towards HK Tau and UY Aur.
We present a computational study into the adsorption properties of CO$_2$ on amorphous and crystalline water surfaces under astrophysically relevant conditions. Water and carbon dioxide are two of the most dominant species in the icy mantles of inter stellar dust grains and a thorough understanding of their solid phase interactions at low temperatures is crucial for understanding the structural evolution of the ices due to thermal segregation. In this paper, a new H$_2$O-CO$_2$ interaction potential is proposed and used to model the ballistic deposition of CO$_2$ layers on water ice surfaces, and to study the individual binding sites at low coverages. Contrary to recent experimental results, we do not observe CO$_2$ island formation on any type of water substrate. Additionally, density functional theory calculations are performed to assess the importance of induced electrostatic interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا