ﻻ يوجد ملخص باللغة العربية
Efficiently controlling the trapping process, especially the trapping efficiency, is central in the study of trap problem in complex systems, since it is a fundamental mechanism for diverse other dynamic processes. Thus, it is of theoretical and practical significance to study the control technique for trapping problem. In this paper, we study the trapping problem in a family of proposed directed fractals with a deep trap at a central node. The directed fractals are a generalization of previous undirected fractals by introducing the directed edge weights dominated by a parameter. We characterize all the eigenvalues and their degeneracies for an associated matrix governing the trapping process. The eigenvalues are provided through an exact recursive relation deduced from the self-similar structure of the fractals. We also obtain the expressions for the smallest eigenvalue and the mean first-passage time (MFPT) as a measure of trapping efficiency, which is the expected time for the walker to first visit the trap. The MFPT is evaluated according to the proved fact that it is approximately equal to reciprocal of the smallest eigenvalue. We show that the MFPT is controlled by the weight parameter, by modifying which, the MFPT can scale superlinealy, linearly, or sublinearly with the system size. Thus, this work paves a way to delicately controlling the trapping process in the fractals.
We use maximal entropy random walk (MERW) to study the trapping problem in dendrimers modeled by Cayley trees with a deep trap fixed at the central node. We derive an explicit expression for the mean first passage time from any node to the trap, as w
Extended Vicsek fractals (EVF) are the structures constructed by introducing linear spacers into traditional Vicsek fractals. Here we study the Laplacian spectra of the EVF. In particularly, the recurrence relations for the Laplacian spectra allow us
Using a classical master equation that describes energy transfer over a given lattice, we explore how energy transfer efficiency along with the photon capturing ability depends on network connectivity, on transfer rates, and on volume fractions - the
We apply the Principle of Maximum Entropy to the study of a general class of deterministic fractal sets. The scaling laws peculiar to these objects are accounted for by means of a constraint concerning the average content of information in those patt
We study the problem of random search in finite networks with a tree topology, where it is expected that the distribution of the first-passage time F(t) decays exponentially. We show that the slope of the exponential tail is independent of the initia