ترغب بنشر مسار تعليمي؟ اضغط هنا

The Electron Firehose and Ordinary-Mode Instabilities in Space Plasmas

235   0   0.0 ( 0 )
 نشر من قبل Marian Lazar
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The selfgenerated wave fluctuations are particularly interesting in the solar wind and magnetospheric plasmas, where Coulomb collisions are rare and cannot explain the observed states of quasi-equilibrium. Linear theory predicts that the firehose and the ordinary-mode instabilities can develop under the same conditions, confusing the role of these instabilities in conditioning the space-plasma properties. The hierarchy of these two instabilities is reconsidered here for nonstreaming plasmas with an electron temperature anisotropy $T_parallel > T_perp$, where $parallel$ and $perp$ denote directions with respect to the local mean magnetic field. In addition to the previous comparative analysis, here the entire 3D wave-vector spectrum of the competing instabilities is investigated, paying particular attention to the oblique firehose instability and the relatively poorly known ordinary-mode instability. Results show a dominance of the oblique firehose instability with a threshold lower than the parallel firehose instability and lower than the ordinary-mode instability. For larger anisotropies, the ordinary mode can grow faster, with maximum growth rates exceeding the ones of the oblique firehose instability. In contrast to previous studies that claimed a possible activity of the ordinary-mode in the small $beta [< 1]$ regimes, here it is rigorously shown that only the large $beta [> 1]$ regimes are susceptible to these instabilities.



قيم البحث

اقرأ أيضاً

Hybrid-kinetic numerical simulations of firehose and mirror instabilities in a collisionless plasma are performed in which pressure anisotropy is driven as the magnetic field is changed by a persistent linear shear $S$. For a decreasing field, it is found that mostly oblique firehose fluctuations grow at ion Larmor scales and saturate with energies $sim$$S^{1/2}$; the pressure anisotropy is pinned at the stability threshold by particle scattering off microscale fluctuations. In contrast, nonlinear mirror fluctuations are large compared to the ion Larmor scale and grow secularly in time; marginality is maintained by an increasing population of resonant particles trapped in magnetic mirrors. After one shear time, saturated order-unity magnetic mirrors are formed and particles scatter off their sharp edges. Both instabilities drive sub-ion-Larmor--scale fluctuations, which appear to be kinetic-Alfv{e}n-wave turbulence. Our results impact theories of momentum and heat transport in astrophysical and space plasmas, in which the stretching of a magnetic field by shear is a generic process.
99 - Sunjung Kim 2019
The preacceleration of electrons through reflection and shock drift acceleration (SDA) is essential for the diffusive shock acceleration (DSA) of nonthermal electrons in collisionless shocks. Previous studies suggested that, in weak quasi-perpendicul ar ($Q_perp$) shocks in the high-$beta$ ($beta=P_{rm gas}/P_{rm B}$) intracluster medium (ICM), the temperature anisotropy due to SDA-reflected electrons can drive the electron firehose instability, which excites oblique nonpropagating waves in the shock foot. In this paper, we investigate, through a linear analysis and particle-in-cell (PIC) simulations, the firehose instabilities driven by an electron temperature anisotropy (ETAFI) and also by a drifting electron beam (EBFI) in $betasim100$ ICM plasmas. The EBFI should be more relevant in describing the self-excitation of upstream waves in $Q_perp$-shocks, since backstreaming electrons in the shock foot behave more like an electron beam rather than an anisotropic bi-Maxwellian population. We find that the basic properties of the two instabilities, such as the growth rate, $gamma$, and the wavenumber of fast-growing oblique modes are similar in the ICM environment, with one exception; while the waves excited by the ETAFI are nonpropagating ($omega_r=0$), those excited by the EBFI have a non-zero frequency ($omega_r eq0$). However, the frequency is small with $omega_r<gamma$. Thus, we conclude that the interpretation of previous studies for the nature of upstream waves based on the ETAFI remains valid in $Q_perp$-shocks in the ICM.
In turbulent high-beta astrophysical plasmas (exemplified by the galaxy cluster plasmas), pressure-anisotropy-driven firehose and mirror fluctuations grow nonlinearly to large amplitudes, dB/B ~ 1, on a timescale comparable to the turnover time of th e turbulent motions. The principle of their nonlinear evolution is to generate secularly growing small-scale magnetic fluctuations that on average cancel the temporal change in the large-scale magnetic field responsible for the pressure anisotropies. The presence of small-scale magnetic fluctuations may dramatically affect the transport properties and, thereby, the large-scale dynamics of the high-beta astrophysical plasmas.
Using hybrid-kinetic particle-in-cell simulation, we study the evolution of an expanding, collisionless, magnetized plasma in which strong Alfvenic turbulence is persistently driven. Temperature anisotropy generated adiabatically by the plasma expans ion (and consequent decrease in the mean magnetic-field strength) gradually reduces the effective elasticity of the field lines, causing reductions in the linear frequency and residual energy of the Alfv{e}nic fluctuations. In response, these fluctuations modify their interactions and spatial anisotropy to maintain a scale-by-scale critical balance between their characteristic linear and nonlinear frequencies. Once the temperature anisotropy is sufficiently negative, the plasma becomes unstable to kinetic firehose instabilities, which excite rapidly growing magnetic fluctuations at ion-Larmor scales. The consequent pitch-angle scattering of particles maintains the temperature anisotropy near marginal stability, even as the turbulent plasma continues to expand. The resulting evolution of parallel and perpendicular temperatures does not satisfy double-adiabatic conservation laws, but is described accurately by a simple model that includes anomalous scattering. Our results have implications for understanding the complex interplay between macro- and micro-scale physics in various hot, dilute, astrophysical plasmas, and offer predictions concerning power spectra, residual energy, ion-Larmor-scale spectral breaks, and non-Maxwellian features in ion distribution functions that may be tested by measurements taken in high-beta regions of the solar wind.
We investigate electrostatic plasma instabilities of Farley-Buneman (FB) type driven by quasi-stationary neutral gas flows in the solar chromosphere. The role of these instabilities in the chromosphere is clarified. We find that the destabilizing ion thermal effect is highly reduced by the Coulomb collisions and can be ignored for the chromospheric FB-type instabilities. On the contrary, the destabilizing electron thermal effect is important and causes a significant reduction of the neutral drag velocity triggering the instability. The resulting threshold velocity is found as function of chromospheric height. Our results indicate that the FB type instabilities are still less efficient in the global chromospheric heating than the Joule dissipation of the currents driving these instabilities. This conclusion does not exclude the possibility that the FB type instabilities develop in the places where the cross-field currents overcome the threshold value and contribute to the heating locally. Typical length-scales of plasma density fluctuations produced by these instabilities are determined by the wavelengths of unstable modes, which are in the range $10-10^2$ cm in the lower chromosphere, and $10^2-10^3$ cm in the upper chromosphere. These results suggest that the decimetric radio waves undergoing scattering (scintillations) by these plasma irregularities can serve as a tool for remote probing of the solar chromosphere at different heights.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا