ﻻ يوجد ملخص باللغة العربية
The surface code is highly practical, enabling arbitrarily reliable quantum computation given a 2-D nearest-neighbor coupled array of qubits with gate error rates below approximately 1%. We describe an open source library, Polyestimate, enabling a user with no knowledge of the surface code to specify realistic physical quantum gate error models and obtain logical error rate estimates. Functions allowing the user to specify simple depolarizing error rates for each gate have also been included. Every effort has been made to make this library user-friendly.
Quantum communication typically involves a linear chain of repeater stations, each capable of reliable local quantum computation and connected to their nearest neighbors by unreliable communication links. The communication rate in existing protocols
Performing large calculations with a quantum computer will likely require a fault-tolerant architecture based on quantum error-correcting codes. The challenge is to design practical quantum error-correcting codes that perform well against realistic n
State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states |A>=(|0>+e^{ipi/4}|1>)/sqrt{2} produced a single
In recent years there has been a considerable effort in optimising formal methods for application to code. This has been driven by tools such as CPAChecker, DIVINE, and CBMC. At the same time tools such as Uppaal have been massively expanding the rea
Electronic stopping (ES) of energetic atoms is not taken care of by the interatomic potentials used in molecular dynamics (MD) simulations when simulating collision cascades. The Lindhard-Scharff (LS) formula for electronic stopping is therefore incl