ﻻ يوجد ملخص باللغة العربية
We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various 3-D geometries appropriate for forming stars. The 3-D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2-D) features include gaps in disks and envelopes, puffed-up inner rims in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium. We include the option for simple power-law envelope geometry, which combined with fractal clumping, and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from PAHs and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: 1) Outflow cavities may be more clumpy than infalling envelopes. 2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband SED slope; and related to this, 3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as YSOs. 4) Our hydrostatic equilibrium models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations.
Episodic accretion-driven outbursts are an extreme manifestation of accretion variability. It has been proposed that the development of gravitational instabilities in the proto-circumstellar medium of massive young stellar objects (MYSOs) can lead to
Jets and outflows are ubiquitous in the process of formation of stars since outflow is intimately associated with accretion. Free-free (thermal) radio continuum emission is associated with these jets. This emission is relatively weak and compact, and
The VVV survey has allowed for an unprecedented number of multi-epoch observations of the southern Galactic plane. In a recent paper,13 massive young stellar objects(MYSOs) have already been identified within the highly variable(Delta Ks > 1 mag) YSO
We present Herschel Space Observatory Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) spectroscopy of a sample of twenty massive Young Stellar Objects (YSOs)
We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program.