ﻻ يوجد ملخص باللغة العربية
We propose a new type of radiative seesaw model in which observed neutrino masses are generated through a three-loop level diagram in combination with tree-level type-II seesaw mechanism in a renormalizable theory. We introduce a Non-abelian flavor symmetry $T_7$ in order to constrain the form of Yukawa interactions and Higgs potential. Although several models based on a Non-abelian flavor symmetry predict the universal coupling constants among the standard model like Higgs boson and charged leptons, which is disfavored by the current LHC data, our model can avoid such a situation. We show a benchmark parameter set that is consistent with the current experimental data, and we discuss multi-muon events as a key collider signature to probe our model.
We study extensions of the standard model by one generation of vector-like leptons with non-standard hypercharges, which allow for a sizable modification of the h -> gamma gamma decay rate for new lepton masses in the 300 GeV - 1 TeV range. We analyz
We study how the charge neutrality affects the phase structure of three-flavor PNJL model. We point out that, within the conventional PNJL model at finite density the color neutrality is missing because the Wilson line serves as an external ``colored
We present extensive studies on hot and dense quark matter with two light and one heavy flavors in the Nambu--Jona-Lasinio model with the Polyakov loop (so-called PNJL model). First we discuss prescription dependence in choosing the Polyakov loop eff
We perform in the type II seesaw setting, a detailed study of the dynamical features of the corresponding general renormalizable doublet/triplet Higgs potential that depends on five dimensionless couplings and two mass parameters after spontaneous sy
We investigate theta-vacuum effects on the QCD phase diagram for the realistic 2+1 flavor system, using the three-flavor Polyakov-extended Nambu-Jona-Lasinio (PNJL) model and the entanglement PNJL model as an extension of the PNJL model. The theta-va