ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiatively driven Rayleigh-Taylor instability candidates around a forming massive star system: NACO adaptive optics and VISIR study of G333.6-0.2

177   0   0.0 ( 0 )
 نشر من قبل M. S. Nanda Kumar
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. S. N. Kumar




اسأل ChatGPT حول البحث

The formation of the highest mass stars are thought to be dominated by instabilities resulting from gravitation and radiation. Instabilities due to gravitation are commonly demonstrated by observations of fragmentation, but those due to effects of radiation have thus far not been found. Here I report on the NACO adaptive optics and mid-infrared diffraction-limited VISIR imaging data of an extemely luminous ultra-compact HII region G333.6-0.2. Two infrared sources, one bright in the near-infrared(appearing point-like) and another in the mid-infrared (resolved with an elliptical shape) are uncovered through this data, which are located at the heart of this region. These infrared sources appear to be embedded in the waist of a bipolar-shaped nebula and UCHII region, the lobes of which are separated by a dark patch. Dense filamentary features with finger/hook morphology are found; they appear to be connected to the two bright infrared sources and the sizes of these hook features are sharply limited to <5000 AU. The observed properties of this target and a large amount of previous data obtained from the literature are compared together with the results of various numerical simulations of high-mass star formation. This comparison favours the interpretation that the finger/hook-like structures likely represent radiatively driven Rayleigh-Taylor instabilities arising in the outflow cavity of a forming high-mass binary star system.



قيم البحث

اقرأ أيضاً

We present high spatial resolution radio and near-infrared hydrogen recombination line observations of the southern massive star-forming region G333.6-0.2. The 3.4-cm continuum peak is found slightly offset from the infrared source. The H90alpha spec tra show for the first time a double peak profile at some positions. The complex velocity structure may be accounted for by champagne outflows, which may also explain the offset between the radio and infrared sources. The 2.17-um Brackett gamma image and H90alpha map are combined to construct an extinction map which shows a trend probably set by the blister nature of the HII region. The total number of Lyman continuum photons in the central 50-arcsec is estimated to be equivalent to that emitted by up to 19 O7V stars.
98 - Shu-Chao Duan 2017
We give theoretical analyses of the Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Both slab and liner configurations with finite thicknesses are dealt with in the WKB and the non-WKB approximations. Results show that instab ilities for all modes (combinations of wave vectors) are alleviated. We further discuss the potential application of the alternant/nested configurations of a theta and a Z pinch to the Theta-Z Liner Inertia Fusion (Theta-Z-LIF) concept.
We investigate the development of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disk around a spinning central black hole. We solve the equations of general relativity that govern small amplitude oscillations of a dis continuous interface in a Keplerian disk threaded by an ordered magnetic field, and we derive a stability criterion that depends on the central black hole spin and the accumulated magnetic field. We also compare our results with the results of GR MHD simulations of black hole accretion flows that reach a magnetically arrested state (MAD). We found that the instability growth timescales that correspond to the simulation parameters are comparable to the corresponding timescales for free-fall accretion from the ISCO onto the black hole. We thus propose that the Rayleigh-Taylor instability disrupts the accumulation of magnetic flux onto the black hole horizon as the disk reaches a MAD state.
We present a multiwavelength study of 28 Galactic massive star-forming H II regions. For 17 of these regions, we present new distance measurements based on Gaia DR2 parallaxes. By fitting a multicomponent dust, blackbody, and power-law continuum mode l to the 3.6 $mu$m through 10 mm spectral energy distributions, we find that ${sim}34$% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ${sim}68$% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates $N_C ge 10^{50}~{rm s}^{-1}$ and dust-processed $L_{rm TIR}ge 10^{6.8}$ L$_{odot}$) have on average higher percentages of absorbed Lyman continuum photons ($sim$51%) and reprocessed starlight ($sim$82%) compared to less luminous regions. Luminous H II regions show lower average PAH fractions than less luminous regions, implying that the strong radiation fields from early-type massive stars are efficient at destroying PAH molecules. On average, the monochromatic luminosities at 8, 24, and 70 $mu$m combined carry 94% of the dust-reprocessed $L_{rm TIR}$. $L_{70}$ captures ${sim}52$% of $L_{rm TIR}$, and is therefore the preferred choice to infer the bolometric luminosity of dusty star-forming regions. We calibrate SFRs based on $L_{24}$ and $L_{70}$ against the Lyman continuum photon rates of the massive stars in each region. Standard extragalactic calibrations of monochromatic SFRs based on population synthesis models are generally consistent with our values.
129 - M. Brusa , M. Perna , G. Cresci 2016
Outflows are invoked in co-evolutionary models to link the growth of SMBH and galaxies through feedback phenomena, and from the analysis of both galaxies and Active Galactic Nuclei (AGN) samples at z$sim1-3$, it is becoming clear that powerful winds are quite common in AGN hosts. High-resolution and high S/N observations are needed in order to uncover the physical properties of the wind through kinematics analysis. We exploited VIMOS, SINFONI and Subaru/IRCS Adaptive Optics data to study the kinematics properties on the scale the host galaxy of XID5395, a luminous, X-ray obscured Starburst/Quasar merging system at z$sim1.5$ detected in the XMM-COSMOS field, and associated with an extreme [O II] emitter (EW$sim200$ AA). We mapped, for the first time, at high resolution the kinematics of the [O III] and H$alpha$ line complexes and linked them with the [O II] emission. The high spatial resolution achieved allowed us to resolve all the components of the SB-QSO system. Our analysis with a resolution of few kpc reveals complexities and asymmetries in and around the nucleus of XID5395. The velocity field measured via non parametric analysis reveals different kinematic components, with maximum blueshifted and redshifted velocities up to $simeq1300$ km s$^{-1}$, not spatially coincident with the nuclear core. These extreme values of the observed velocities and the spatial location can be explained by the presence of fast moving material. We also spectroscopically confirm the presence of a merging system at the same redshift of the AGN host. We propose that EW as large as $>150$ AA in X-ray selected AGN may be an efficient criterion to isolate objects associated to the short, transition phase of feedback in the AGN-galaxy co-evolutionary path, which will subsequently evolve in an unobscured QSO, as suggested from the different observational evidences we accumulated for XID5395.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا