ﻻ يوجد ملخص باللغة العربية
The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The studied region includes the 132Sn double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A = 135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations.
The masses of 40 neutron-rich nuclides from Z = 51 to 64 were measured at an average precision of $delta m/m= 10^{-7}$ using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. The measurements, of fission fragments from a $^{
High-precision mass measurements on neutron-rich zinc isotopes 71m,72-81Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the
Heavy neutron-rich nuclei close to N=126 were produced by fragmentation of a 1 A GeV 208Pb beam at the FRS at GSI. The beta-decay half-lives of 8 nuclides have been determined. The comparison of the data with model calculations including an approach
We report mass measurements of neutron-rich Ga isotopes $^{80-85}$Ga with TRIUMFs Ion Trap for Atomic and Nuclear science (TITAN). The measurements determine the masses of $^{80-83}$Ga in good agreement with previous measurements. The masses of $^{84
The rare-earth peak in the $r$-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing